Involvement of a heptad repeat in the carboxyl terminus of the dihydropyridine receptor β1a subunit in the mechanism of excitation-contraction coupling in skeletal muscle

被引:38
作者
Sheridan, DC [1 ]
Cheng, WJ [1 ]
Carbonneau, L [1 ]
Ahern, CA [1 ]
Coronado, R [1 ]
机构
[1] Univ Wisconsin, Sch Med, Dept Physiol, Madison, WI 53706 USA
关键词
D O I
10.1529/biophysj.104.043810
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Chimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) beta1a subunit and the heterologous cardiac/brain beta2a subunit were used to determine which regions of beta1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in beta1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies. The data indicates that a beta1a-specific domain present in the carboxyl terminus, namely the D5 region comprising the last 47 residues (beta1a 478-524), is essential for expression of skeletal-type EC coupling. Furthermore, the location of beta1aD5 immediately downstream from conserved domain D4 is also critical. In contrast, chimeras in which beta1aD5 was swapped by the D5 region of b2a expressed Ca2+ transients triggered by the Ca2+ current, or none at all. A hydrophobic heptad repeat is present in domain D5 of beta1a (L478, V485, V492). To determine the role of this motif, residues in the heptad repeat were mutated to alanines. The triple mutant beta1a(L478A/V485A/V492A) recovered weak skeletal-type EC coupling (DeltaF/F-max = 0.4 +/- 0.1 vs. 2.7 +/- 0.5 for wild-type beta1a). However, a triple mutant with alanine substitutions at positions out of phase with the heptad repeat, beta1a(S481A/L488A/S495A), was normal (DeltaF/F-max 2.1 +/- 0.4). In summary, the presence of the beta1a-specific D5 domain, in its correct position after conserved domain D4, is essential for skeletal-type EC coupling. Furthermore, a heptad repeat in beta1aD5 controls the EC coupling activity. The carboxyl terminal heptad repeat of beta1a might be involved in protein-protein interactions with ryanodine receptor type 1 required for DHPR to ryanodine receptor type 1 signal transmission.
引用
收藏
页码:929 / 942
页数:14
相关论文
共 57 条
[1]   Ca2+ current and charge movements in skeletal myotubes promoted by the β-subunit of the dihydropyridine receptor in the absence of ryanodine receptor type 1 [J].
Ahern, CA ;
Sheridan, DC ;
Cheng, WJ ;
Mortenson, L ;
Nataraj, P ;
Allen, P ;
De Waard, M ;
Coronado, R .
BIOPHYSICAL JOURNAL, 2003, 84 (02) :942-959
[2]   Intramembrane charge movements and excitation-contraction coupling expressed by two-domain fragments of the Ca2+ channel [J].
Ahern, CA ;
Arikkath, J ;
Vallejo, P ;
Gurnett, CA ;
Powers, PA ;
Campbell, KP ;
Coronado, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6935-6940
[3]   A component of excitation-contraction coupling triggered in the absence of the T671-L690 and L720-Q765 regions of the II-III loop of the dihydropyridine receptor α1s pore subunit [J].
Ahern, CA ;
Bhattacharya, D ;
Mortenson, L ;
Coronado, R .
BIOPHYSICAL JOURNAL, 2001, 81 (06) :3294-3307
[4]   Cell signalling: MAGUK magic [J].
Anderson, JM .
CURRENT BIOLOGY, 1996, 6 (04) :382-384
[5]   Differential regulation of skeletal muscle L-type Ca2+ current and excitation-contraction coupling by the dihydropyridine receptor β subunit [J].
Beurg, M ;
Sukhareva, M ;
Ahern, CA ;
Conklin, MW ;
Perez-Reyes, E ;
Powers, PA ;
Gregg, RG ;
Coronado, R .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :1744-1756
[6]   Recovery of Ca2+ current, charge movements, and Ca2+ transients in myotubes deficient in dihydropyridine receptor beta(1) subunit transfected with beta(1) cDNA [J].
Beurg, M ;
Sukhareva, M ;
Strube, C ;
Powers, PA ;
Gregg, RG ;
Coronado, R .
BIOPHYSICAL JOURNAL, 1997, 73 (02) :807-818
[7]   Involvement of the carboxy-terminus region of the dihydropyridine receptor β1a subunit in excitation-contraction coupling of skeletal muscle [J].
Beurg, M ;
Ahern, CA ;
Vallejo, P ;
Conklin, MW ;
Powers, PA ;
Gregg, RG ;
Coronado, R .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :2953-2967
[8]  
Bhattacharya D, 2004, BIOPHYS J, V86, p64A
[9]   The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit [J].
Bichet, D ;
Cornet, V ;
Geib, S ;
Carlier, E ;
Volsen, S ;
Hoshi, T ;
Mori, Y ;
De Waard, M .
NEURON, 2000, 25 (01) :177-190
[10]   Structures and functions of calcium channel β subunits [J].
Birnbaumer, L ;
Qin, N ;
Olcese, R ;
Tareilus, E ;
Platano, D ;
Costantin, J ;
Stefani, E .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1998, 30 (04) :357-375