Fractional Diffusion Equation and Impedance Spectroscopy of Electrolytic Cells

被引:58
|
作者
Lenzi, E. K. [1 ]
Evangelista, L. R. [1 ]
Barbero, G. [2 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 33期
关键词
COMPLEX DIELECTRIC-CONSTANT; ANOMALOUS DIFFUSION; IONS;
D O I
10.1021/jp904741m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of the ions on the electrochemical impedance of a cell is calculated in the framework of a complete model in which the fractional drift-diffusion problem is analytically solved. The resulting distribution of the electric field inside the sample is determined by solving Poisson's equation. The theoretical model to determine the electrical impedance we are proposing here is based oil the fractional derivative of distributed order on the diffusion equation. We argue that this is the more convenient and physically significant approach to account for the enormous variety of the diffusive regimes in a real cell. The frequency dependence of the real and imaginary parts of the impedance are shown to be very similar to the ones experimentally obtained in a large variety of electrolytic samples.
引用
收藏
页码:11371 / 11374
页数:4
相关论文
共 50 条
  • [41] Fractional thermal diffusion and the heat equation
    Gomez, Francisco
    Morales, Luis
    Gonzalez, Mario
    Alvarado, Victor
    Lopez, Guadalupe
    OPEN PHYSICS, 2015, 13 (01): : 170 - 176
  • [42] Apriori estimates for fractional diffusion equation
    K. Burazin
    D. Mitrovic
    Optimization Letters, 2019, 13 : 1793 - 1801
  • [43] Optimal control of fractional diffusion equation
    Mophou, Gisele. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (01) : 68 - 78
  • [44] FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION
    METZLER, R
    GLOCKLE, WG
    NONNENMACHER, TF
    PHYSICA A, 1994, 211 (01): : 13 - 24
  • [45] On fractional diffusion equation with noise perturbation
    C. S. Sridevi
    Mabel L. Rajendran
    M. Suvinthra
    International Journal of Dynamics and Control, 2024, 12 : 98 - 106
  • [46] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [47] On a time fractional reaction diffusion equation
    Ahmad, B.
    Alhothuali, M. S.
    Alsulami, H. H.
    Kirane, M.
    Timoshin, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 199 - 204
  • [48] An inverse problem for a fractional diffusion equation
    Xiong, Xiangtuan
    Guo, Hongbo
    Liu, Xiaohong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (17) : 4474 - 4484
  • [49] Convolution integral for fractional diffusion equation
    Razminia, Kambiz
    Razminia, Abolhassan
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [50] The Riesz–Bessel Fractional Diffusion Equation
    V.V. Anh
    R. McVinish
    Applied Mathematics and Optimization, 2004, 49 : 241 - 264