Fractional Diffusion Equation and Impedance Spectroscopy of Electrolytic Cells

被引:57
|
作者
Lenzi, E. K. [1 ]
Evangelista, L. R. [1 ]
Barbero, G. [2 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[2] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2009年 / 113卷 / 33期
关键词
COMPLEX DIELECTRIC-CONSTANT; ANOMALOUS DIFFUSION; IONS;
D O I
10.1021/jp904741m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of the ions on the electrochemical impedance of a cell is calculated in the framework of a complete model in which the fractional drift-diffusion problem is analytically solved. The resulting distribution of the electric field inside the sample is determined by solving Poisson's equation. The theoretical model to determine the electrical impedance we are proposing here is based oil the fractional derivative of distributed order on the diffusion equation. We argue that this is the more convenient and physically significant approach to account for the enormous variety of the diffusive regimes in a real cell. The frequency dependence of the real and imaginary parts of the impedance are shown to be very similar to the ones experimentally obtained in a large variety of electrolytic samples.
引用
收藏
页码:11371 / 11374
页数:4
相关论文
共 50 条
  • [1] Evidence of the ambipolar diffusion in the impedance spectroscopy of an electrolytic cell
    Barbero, G.
    Lelidis, I.
    PHYSICAL REVIEW E, 2007, 76 (05):
  • [2] Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell
    Santoro, P. A.
    de Paula, J. L.
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (11):
  • [3] Fractional Diffusion Equation and the Electrical Impedance: Experimental Evidence in Liquid-Crystalline Cells
    Ciuchi, F.
    Mazzulla, A.
    Scaramuzza, N.
    Lenzi, E. K.
    Evangelista, L. R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15): : 8773 - 8777
  • [4] Ambipolar diffusion in the low frequency impedance response of electrolytic cells
    Antonova, A.
    Barbero, G.
    Evangelista, L. R.
    Tilli, P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (04):
  • [5] Significance of small voltage in impedance spectroscopy measurements on electrolytic cells
    Barbero, G
    Alexe-Ionescu, AL
    Lelidis, I
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (11)
  • [6] Effects of a dc bias on electrical impedance spectroscopy in electrolytic cells
    Barbero, G.
    Gliozzi, A. S.
    Scalerandi, M.
    Scarfone, A. M.
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 272 : 565 - 571
  • [7] FRACTIONAL DIFFUSION EQUATION
    SCHNEIDER, WR
    WYSS, W
    HELVETICA PHYSICA ACTA, 1987, 60 (02): : 358 - 358
  • [8] THE FRACTIONAL DIFFUSION EQUATION
    WYSS, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2782 - 2785
  • [9] Unified fractional kinetic equation and a fractional diffusion equation
    Saxena, RK
    Mathai, AM
    Haubold, HJ
    ASTROPHYSICS AND SPACE SCIENCE, 2004, 290 (3-4) : 299 - 310
  • [10] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62