Robust Material Decomposition for Spectral CT

被引:1
作者
Clark, D. P. [1 ]
Johnson, G. A. [1 ]
Badea, C. T. [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Radiol, Ctr In Vivo Microscopy, Durham, NC 27710 USA
来源
MEDICAL IMAGING 2014: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING | 2014年 / 9038卷
关键词
spectral CT; dual energy CT; micro-CT; split Bregman method; material decomposition; bilateral filtration; GOLD NANOPARTICLES; ENERGY; IODINE;
D O I
10.1117/12.2042546
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There is ongoing interest in extending CT from anatomical to functional imaging. Recent successes with dual energy CT, the introduction of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents enable functional imaging capabilities via spectral CT. However, many challenges related to radiation dose, photon flux, and sensitivity still must be overcome. Here, we introduce a post-reconstruction algorithm called spectral diffusion that performs a robust material decomposition of spectral CT data in the presence of photon noise to address these challenges. Specifically, we use spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased relative to the source data. Spectral diffusion integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms. Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Ashton J. R., PLOS ONE IN PRESS
[2]  
Ashton J. R., CONTRAST ME IN PRESS
[3]   Dual-energy micro-CT of the rodent lung [J].
Badea, C. T. ;
Guo, X. ;
Clark, D. ;
Johnston, S. M. ;
Marshall, C. D. ;
Piantadosi, C. A. .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2012, 302 (10) :L1088-L1097
[4]  
Badea C. T., 2008, SPIE
[5]  
Badea C. T., 2011, P SOC PHOTO-OPT INS
[6]   Dual-Energy Computed Tomography Imaging of Atherosclerotic Plaques in a Mouse Model Using a Liposomal-Iodine Nanoparticle Contrast Agent [J].
Bhavane, Rohan ;
Badea, Cristian ;
Ghaghada, Ketan B. ;
Clark, Darin ;
Vela, Deborah ;
Moturu, Anoosha ;
Annapragada, Akshaya ;
Johnson, G. Allan ;
Willerson, James T. ;
Annapragada, Ananth .
CIRCULATION-CARDIOVASCULAR IMAGING, 2013, 6 (02) :285-294
[7]  
Clark D., 2012, P SOC PHOTO-OPT INS, V831483143Z
[8]   In vivo characterization of tumor vasculature using iodine and gold nanoparticles and dual energy micro-CT [J].
Clark, Darin P. ;
Ghaghada, Ketan ;
Moding, Everett J. ;
Kirsch, David G. ;
Badea, Cristian T. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (06) :1683-1704
[9]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[10]   A high-precision contrast injector for small animal X-ray digital subtraction angiography [J].
De Lin, Ming ;
Ning, Lutao ;
Badea, Cristian T. ;
Mistry, Nilesh N. ;
Qi, Yi ;
Johnson, G. Allan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (03) :1082-1091