Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations

被引:14
作者
Bellacicco, Marco [1 ,2 ]
Vellucci, Vincenzo [3 ]
Scardi, Michele [4 ]
Barbieux, Marie [1 ]
Marullo, Salvatore [2 ]
D'Ortenzio, Fabrizio [1 ]
机构
[1] Sorbonne Univ, CNRS, LOV, F-06230 Villefranche Sur Mer, France
[2] Italian Natl Agcy New Technol Energy & Sustainabl, I-00044 Frascati, Italy
[3] Sorbonne Univ, CNRS, Inst Mer Villefranche, IMEV, F-06230 Villefranche Sur Mer, France
[4] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy
基金
欧洲研究理事会;
关键词
linear regression methods; bio-optical properties; BGC-Argo; satellite oceanography; INHERENT OPTICAL-PROPERTIES; QUASI-ANALYTICAL ALGORITHM; IN-SITU; MEDITERRANEAN SEA; BEAM ATTENUATION; SOUTH-PACIFIC; BACKSCATTERING; VARIABILITY; COLOR; CHLOROPHYLL;
D O I
10.3390/s19133032
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Linear regression is widely used in applied sciences and, in particular, in satellite optical oceanography, to relate dependent to independent variables. It is often adopted to establish empirical algorithms based on a finite set of measurements, which are later applied to observations on a larger scale from platforms such as autonomous profiling floats equipped with optical instruments (e.g., Biogeochemical Argo floats; BGC-Argo floats) and satellite ocean colour sensors (e.g., SeaWiFS, VIIRS, OLCI). However, different methods can be applied to a given pair of variables to determine the coefficients of the linear equation fitting the data, which are therefore not unique. In this work, we quantify the impact of the choice of regression method (i.e., either type-I or type-II) to derive bio-optical relationships, both from theoretical perspectives and by using specific examples. We have applied usual regression methods to an in situ data set of particulate organic carbon (POC), total chlorophyll-a (TChla), optical particulate backscattering coefficient (b(bp)), and 19 years of monthly TChla and b(bp) ocean colour data. Results of the regression analysis have been used to calculate phytoplankton carbon biomass (C-phyto) and POC from: i) BGC-Argo float observations; ii) oceanographic cruises, and iii) satellite data. These applications enable highlighting the differences in C-phyto and POC estimates relative to the choice of the method. An analysis of the statistical properties of the dataset and a detailed description of the hypothesis of the work drive the selection of the linear regression method.
引用
收藏
页数:15
相关论文
共 44 条
[1]  
[Anonymous], 2012, NUMERICAL ECOLOGY
[2]  
Antoine D., 2006, BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity
[3]   The "BOUSSOLE" buoy - A new transparent-to-swell taut mooring dedicated to marine optics: Design, tests, and performance at sea [J].
Antoine, David ;
Guevel, Pierre ;
Deste, Jean-Francois ;
Becu, Guislain ;
Louis, Francis ;
Scott, Alec J. ;
Bardey, Philippe .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (06) :968-989
[4]   Variability in optical particle backscattering in contrasting bio-optical oceanic regimes [J].
Antoine, David ;
Siegel, David A. ;
Kostadinov, Tihomir ;
Maritorena, Stephane ;
Nelson, Norm B. ;
Gentili, Bernard ;
Vellucci, Vincenzo ;
Guillocheau, Nathalie .
LIMNOLOGY AND OCEANOGRAPHY, 2011, 56 (03) :955-973
[5]   Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project) [J].
Antoine, David ;
d'Ortenzio, Fabrizio ;
Hooker, Stanford B. ;
Becu, Guislain ;
Gentili, Bernard ;
Tailliez, Dominique ;
Scott, Alec J. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C7)
[6]   DETERMINING CARBON TO CHLOROPHYLL RATIO OF NATURAL PHYTOPLANKTON [J].
BANSE, K .
MARINE BIOLOGY, 1977, 41 (03) :199-212
[7]   Carbon-based ocean productivity and phytoplankton physiology from space [J].
Behrenfeld, MJ ;
Boss, E ;
Siegel, DA ;
Shea, DM .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-14
[8]   Global Distribution of Non-algal Particles From Ocean Color Data and Implications for Phytoplankton Biomass Detection [J].
Bellacicco, M. ;
Volpe, G. ;
Briggs, N. ;
Brando, V. ;
Pitarch, J. ;
Landolfi, A. ;
Colella, S. ;
Marullo, S. ;
Santoleri, R. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (15) :7672-7682
[9]   Influence of photoacclimation on the phytoplankton seasonal cycle in the Mediterranean Sea as seen by satellite [J].
Bellacicco, M. ;
Volpe, G. ;
Colella, S. ;
Pitarch, J. ;
Santoleri, R. .
REMOTE SENSING OF ENVIRONMENT, 2016, 184 :595-604
[10]   The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms [J].
Brewin, Robert J. W. ;
Sathyendranath, Shubha ;
Mueller, Dagmar ;
Brockrnann, Carsten ;
Deschamps, Pierre-Yves ;
Devred, Emmanuel ;
Doerffer, Roland ;
Fomferra, Norman ;
Franz, Bryan ;
Grant, Mike ;
Groom, Steve ;
Horseman, Andrew ;
Hu, Chuanmin ;
Krasemann, Hajo ;
Lee, ZhongPing ;
Maritorena, Stephane ;
Melin, Frederic ;
Peters, Marco ;
Platt, Trevor ;
Regner, Peter ;
Smyth, Tim ;
Steinmetz, Francois ;
Swinton, John ;
Werdell, Jeremy ;
White, George N., III .
REMOTE SENSING OF ENVIRONMENT, 2015, 162 :271-294