Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation

被引:139
作者
Hu, Jing-Jing [1 ,2 ]
Liu, Miao-Deng [1 ,2 ]
Gao, Fan [1 ,2 ]
Chen, Ying [1 ,2 ]
Peng, Si-Yuan [1 ,2 ]
Li, Zi-Hao [1 ,2 ]
Cheng, Han [1 ,2 ]
Zhang, Xian-Zheng [1 ,2 ]
机构
[1] Wuhan Univ, Key Lab Biomed Polymers, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Dept Chem, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Tumor; Liquid metal; Photothermal therapy; Starvation therapy; Enzyme activity; PHOTOTHERMAL THERAPY; CELLS;
D O I
10.1016/j.biomaterials.2019.119303
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Here, a highly cooperative liquid metal nanoparticle-enzyme (LM@GOX) was constructed for combinational starvation/photothermal therapy of tumor. It was found that the enzyme activity of glucose oxidase (GOX) could be strengthened along with the increased temperature within a given range and its optimal activity is around about 43-60 degrees C. Utilizing the photothermal conversion ability of liquid metal (LM), the GOX catalytic efficiency could be photo-controlled with improved starvation therapeutic efficiency. Furthermore, due to the accelerating blood flow during the photothermal therapy (PTT), the hypoxic situation in tumor tissues could also be relieved, which would contribute to conquering the hypoxia-suppressed GOX catalysis. In the meanwhile, the severe thermo-resistance of tumor cells during PTT process could be overcome by GOX induced decrease of adenosine triphosphate (ATP) and heat shock proteins (HSPs) level, eventually leading to an improved therapeutic effect of PTT. Both in vitro and in vivo studies proved that LM@GOX could significantly inhibit the growth of solid tumor under NIR illumination by a win-win cooperative starvation/photothermal therapy.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Enhanced Phototherapy by Nanoparticle-Enzyme via Generation and Photolysis of Hydrogen Peroxide [J].
Chang, Kaiwen ;
Liu, Zhihe ;
Fang, Xiaofeng ;
Chen, Haobin ;
Men, Xiaoju ;
Yuan, Ye ;
Sun, Kai ;
Zhang, Xuanjun ;
Yuan, Zhen ;
Wu, Changfeng .
NANO LETTERS, 2017, 17 (07) :4323-4329
[2]   Light-driven liquid metal nanotransformers for biomedical theranostics [J].
Chechetka, Svetlana A. ;
Yu, Yue ;
Zhen, Xu ;
Pramanik, Manojit ;
Pu, Kanyi ;
Miyako, Eijiro .
NATURE COMMUNICATIONS, 2017, 8
[3]   Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy [J].
Chen, Wei-Hai ;
Luo, Guo-Feng ;
Lei, Qi ;
Hong, Sheng ;
Qiu, Wen-Xiu ;
Liu, Li-Han ;
Cheng, Si-Xue ;
Zhang, Xian-Zheng .
ACS NANO, 2017, 11 (02) :1419-1431
[4]   Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method [J].
Chou, Ting-Chao .
CANCER RESEARCH, 2010, 70 (02) :440-446
[5]   Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy [J].
Fan, Wenpei ;
Lu, Nan ;
Huang, Peng ;
Liu, Yi ;
Yang, Zhen ;
Wang, Sheng ;
Yu, Guocan ;
Liu, Yijing ;
Hu, Junkai ;
He, Qianjun ;
Qu, Junle ;
Wang, Tianfu ;
Chen, Xiaoyuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (05) :1229-1233
[6]   Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment [J].
Fu, Lian-Hua ;
Qi, Chao ;
Lin, Jing ;
Huang, Peng .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (17) :6454-6472
[7]   Recent advances in functional nanomaterials for light-triggered cancer therapy [J].
Gai, Shili ;
Yang, Guixin ;
Yang, Piaoping ;
He, Fei ;
Lin, Jun ;
Jin, Dayong ;
Xing, Bengang .
NANO TODAY, 2018, 19 :146-187
[8]   Prospects for combining targeted and conventional cancer therapy with immunotherapy [J].
Gotwals, Philip ;
Cameron, Scott ;
Cipolletta, Daniela ;
Cremasco, Viviana ;
Crystal, Adam ;
Hewes, Becker ;
Mueller, Britta ;
Quaratino, Sonia ;
Sabatos-Peyton, Catherine ;
Petruzzelli, Lilli ;
Engelman, Jeffrey A. ;
Dranoff, Glenn .
NATURE REVIEWS CANCER, 2017, 17 (05) :286-301
[9]   Recent advances in nanomaterials for enhanced photothermal therapy of tumors [J].
Hu, Jing-Jing ;
Cheng, Ying-Jia ;
Zhang, Xian-Zheng .
NANOSCALE, 2018, 10 (48) :22657-22672
[10]   Tumor-selective catalytic nanomedicine by nanocatalyst delivery [J].
Huo, Minfeng ;
Wang, Liying ;
Chen, Yu ;
Shi, Jianlin .
NATURE COMMUNICATIONS, 2017, 8