Differential Evolution Algorithm Based on Adaptive Rank Exponent and Parameters

被引:0
作者
Mai, Weijie [1 ]
Wei, Mingzhu [1 ]
Shen, Fengshan [1 ]
Yuan, Feng [1 ]
机构
[1] Guangzhou & Chinese Acad Sci, Inst Software Applicat Technol, Guangzhou, Peoples R China
来源
COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I | 2022年 / 1491卷
关键词
Differential evolution algorithm; Adaptive rank exponent and parameters; Mutation strategy; OPTIMIZATION;
D O I
10.1007/978-981-19-4546-5_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential evolution algorithm is a very useful and impactful method for handling global numerical optimization issue in the evolutionary algorithm family. However, there are still some shortcomings. Such as, the performance of DE is depend on its mutation strategy and parameters setting. In this article, we present a new fashione differential evolution algorithm which called AFP-DE with adaptive rank exponent and parameters. Compared with the update variant DE algorithms, the experiment shows that performance of AFP-DE is better than them with good performance.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 19 条
  • [1] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [2] A trigonometric mutation operation to differential evolution
    Fan, HY
    Lampinen, J
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2003, 27 (01) : 105 - 129
  • [3] Artificial Bee Colony Algorithm Based on Information Learning
    Gao, Wei-Feng
    Huang, Ling-Ling
    Liu, San-Yang
    Dai, Cai
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (12) : 2827 - 2839
  • [4] Differential Evolution With Ranking-Based Mutation Operators
    Gong, Wenyin
    Cai, Zhihua
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 2066 - 2081
  • [5] Differential Evolution With a Variable Population Size for Deployment Optimization in a UAV-Assisted IoT Data Collection System
    Huang, Pei-Qiu
    Wang, Yong
    Wang, Kezhi
    Yang, Kun
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2020, 4 (03): : 324 - 335
  • [6] An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies
    Lin, Qiuzhen
    Ma, Yueping
    Chen, Jianyong
    Zhu, Qingling
    Coello Coello, Carlos A.
    Wong, Ka-Chun
    Chen, Fei
    [J]. INFORMATION SCIENCES, 2018, 430 : 46 - 64
  • [7] Price KV., 1999, New Ideas in Optimization, P79
  • [8] Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
    Qin, A. K.
    Huang, V. L.
    Suganthan, P. N.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) : 398 - 417
  • [9] Self-adaptive differential evolution algorithm for numerical optimization
    Qin, AK
    Suganthan, PN
    [J]. 2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 1785 - 1791
  • [10] Rönkkönen J, 2005, IEEE C EVOL COMPUTAT, P506