Note on the residual finiteness of Artin groups

被引:6
|
作者
Blasco-Garcia, Ruben [1 ]
Juhasz, Arye [2 ]
Paris, Luis [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Univ Bourgogne Franche Comte, CNRS, IMB, UMR 5584, F-21000 Dijon, France
关键词
BRAID-GROUPS; LINEARITY;
D O I
10.1515/jgth-2018-0049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an Artin group. A partition P of the set of standard generators of A is called admissible if, for all X; Y is an element of P, X not equal Y, there is at most one pair (s, t) is an element of X x Y which has a relation. An admissible partition P determines a quotient Coxeter graph Gamma= P. We prove that, if Gamma= P is either a forest or an even triangle free Coxeter graph and A(X) is residually finite for all X is an element of P, then A is residually finite.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 30 条
  • [1] Residual finiteness of certain 2-dimensional Artin groups
    Jankiewicz, Kasia
    ADVANCES IN MATHEMATICS, 2022, 405
  • [2] Residual finiteness growths of virtually special groups
    Bou-Rabee, Khalid
    Hagen, Mark F.
    Patel, Priyam
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 297 - 310
  • [3] Splittings of triangle Artin groups
    Jankiewicz, Kasia
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 91 - 108
  • [4] ARTIN COVERS OF THE BRAID GROUPS
    Amram, Meirav
    Lawrence, Ruth
    Vishne, Uzi
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (07)
  • [5] A quotient of the Artin braid groups related to crystallographic groups
    Goncalves, Daciberg Lima
    Guaschi, John
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2017, 474 : 393 - 423
  • [6] Artin groups of type B and D
    Crisp, J
    Paris, L
    ADVANCES IN GEOMETRY, 2005, 5 (04) : 607 - 636
  • [7] Orderings on Artin-Tits groups
    Sibert, Herve
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (06) : 1035 - 1066
  • [8] Cactus groups, twin groups, and right-angled Artin groups
    Bellingeri, Paolo
    Chemin, Hugo
    Lebed, Victoria
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (01) : 153 - 178
  • [9] A gathering process in Artin braid groups
    Esyp, Evgeinj S.
    Kazachkov, Ilya V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2006, 16 (04) : 771 - 795
  • [10] Cactus groups, twin groups, and right-angled Artin groups
    Paolo Bellingeri
    Hugo Chemin
    Victoria Lebed
    Journal of Algebraic Combinatorics, 2024, 59 : 153 - 178