Robust inference in the multilevel zero-inflated negative binomial model

被引:2
作者
Zandkarimi, Eghbal [1 ]
Moghimbeigi, Abbas [2 ]
Mahjub, Hossein [3 ]
Majdzadeh, Reza [4 ]
机构
[1] Hamadan Univ Med Sci, Sch Publ Hlth, Dept Biostat, Hamadan, Iran
[2] Hamadan Univ Med Sci, Modeling Noncommunicable Dis Res Ctr, Dept Biostat, Sch Publ Hlth, Hamadan, Iran
[3] Hamadan Univ Med Sci, Sch Publ Hlth, Res Ctr Hlth Sci, Dept Biostat, Hamadan, Iran
[4] Univ Tehran Med Sci, Iranian Inst Hlth Sci Res, Tehran, Iran
关键词
Expectation-maximization (EM) algorithm; robust expectation-solution (RES); decayed; missing and filled teeth (DMFT); mean square error (MSE); multilevel zero-inflated negative binomial (MZINB); DISPERSED COUNT DATA; POISSON REGRESSION; DENTAL-CARIES; SCHOOLCHILDREN; SCHOOL;
D O I
10.1080/02664763.2019.1636942
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A popular way to model correlated count data with excess zeros and over-dispersion simultaneously is by means of the multilevel zero-inflated negative binomial (MZINB) distribution. Due to the complexity of the likelihood of these models, numerical methods such as the EM algorithm are used to estimate parameters. On the other hand, in the presence of outliers or when mixture components are poorly separated, the likelihood-based methods can become unstable. To overcome this challenge, we extend the robust expectation-solution (RES) approach for building a robust estimator of the regression parameters in the MZINB model. This approach achieves robustness by applying robust estimating equations in the S-step instead of estimating equations in the M-step of the EM algorithm. The robust estimation equation in the logistic component only weighs the design matrix (X) and reduces the effect of the leverage points, but in the negative binomial component, the influence of deviations on the response (Y) and design matrix (X) are bound separately. Simulation studies under various settings show that the RES algorithm gives us consistent estimates with smaller biases than the EM algorithm under contaminations. The RES algorithm applies to the data of the DMFT index and the fertility rate data.
引用
收藏
页码:287 / 305
页数:19
相关论文
共 48 条
[1]  
Acharya A.K., 2010, Trayectorias, V12, P61
[2]   Robust Inference in the Negative Binomial Regression Model with an Application to Falls Data [J].
Aeberhard, William H. ;
Cantoni, Eva ;
Heritier, Stephane .
BIOMETRICS, 2014, 70 (04) :920-931
[3]   Multilevel zero-inflated Generalized Poisson regression modeling for dispersed correlated count data [J].
Almasi, Afshin ;
Eshraghian, Mohammad Reza ;
Moghimbeigi, Abbas ;
Rahimi, Abbas ;
Mohammad, Kazem ;
Fallahigilan, Sadegh .
STATISTICAL METHODOLOGY, 2016, 30 :1-14
[4]  
Beatty A., 2016, RECENT FERTILITY TRE
[5]  
Bianco AM, 1996, ROBUST STAT DATA ANA, P17
[6]   The pathfinder study among schoolchildren in the Republic of Moldova: dental caries experience [J].
Bilder, Leon ;
Stepco, Elena ;
Uncuta, Diana ;
Aizenbud, Dror ;
Machtei, Eli ;
Bilder, Amir ;
Sgan-Cohen, Harold D. .
INTERNATIONAL DENTAL JOURNAL, 2018, 68 (05) :344-347
[7]   Caries experience of children in primary schools with long-term tooth brushing programs: A pilot Australian study [J].
Cakar, T. ;
Harrison-Barry, L. ;
Pukallus, M. L. ;
Kazoullis, S. ;
Seow, W. K. .
INTERNATIONAL JOURNAL OF DENTAL HYGIENE, 2018, 16 (02) :233-240
[8]   A robust approach to longitudinal data analysis [J].
Cantoni, E .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (02) :169-180
[9]   Robust inference for generalized linear models [J].
Cantoni, E ;
Ronchetti, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1022-1030
[10]  
Carroll R., 1995, NONLINEAR MEASUREMEN, V63