DISCRETE FOURIER TRANSFORM ASSOCIATED WITH GENERALIZED SCHUR POLYNOMIALS

被引:9
|
作者
van Diejen, J. F. [1 ]
Emsiz, E. [2 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
关键词
Discrete Fourier transform; discrete Laplacian; boundary perturbations; diagonalization; generalized Schur polynomials; ORTHOGONAL POLYNOMIALS; MODEL;
D O I
10.1090/proc/14036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Plancherel formula for a four-parameter family of discrete Fourier transforms and their multivariate generalizations stemming from corresponding generalized Schur polynomials. For special choices of the parameters, this recovers the sixteen classic discrete sine-and cosine transforms DST-1, ... , DST-8 and DCT-1, ... , DCT-8, as well as recently studied (anti) symmetric multivariate generalizations thereof.
引用
收藏
页码:3459 / 3472
页数:14
相关论文
共 50 条
  • [21] Binary Discrete Fourier Transform and Its Inversion
    Levinson, Howard W.
    Markel, Vadim A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3484 - 3499
  • [22] Method for the discrete fractional Fourier transform computation
    Yeh, MH
    Pei, SC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (03) : 889 - 891
  • [23] Fast Fourier transform discrete dislocation dynamics
    Graham, J. T.
    Rollett, A. D.
    LeSar, R.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (08)
  • [24] GENERATING MATRIX OF DISCRETE FOURIER TRANSFORM EIGENVECTORS
    Pei, Soo-Chang
    Chang, Kuo-Wei
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3333 - 3336
  • [25] Discrete fractional Fourier transform: Vandermonde approach
    Moya-Cessa, Hector M.
    Soto-Eguibar, Francisco
    IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (06) : 908 - 916
  • [26] Explicit solution for Nonuniform Discrete Fourier Transform
    Shen, Yi
    Zhu, Chunhui
    Liu, Lijun
    Wang, Qiang
    Jin, Jing
    Lin, Yurong
    2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [27] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [28] Improvement of the characteristics of the multirate discrete Fourier transform
    Yamamoto, H
    Noguchi, K
    Tadokoro, Y
    ELECTRICAL ENGINEERING IN JAPAN, 2005, 150 (02) : 20 - 27
  • [29] Computing the Discrete Fourier Transform on a Hexagonal Lattice
    Andrew Vince
    Xiqiang Zheng
    Journal of Mathematical Imaging and Vision, 2007, 28 : 125 - 133
  • [30] On the law of large numbers for discrete Fourier transform
    Zhang, Na
    STATISTICS & PROBABILITY LETTERS, 2017, 120 : 101 - 107