DISCRETE FOURIER TRANSFORM ASSOCIATED WITH GENERALIZED SCHUR POLYNOMIALS

被引:9
|
作者
van Diejen, J. F. [1 ]
Emsiz, E. [2 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Casilla 747, Talca, Chile
[2] Pontificia Univ Catolica Chile, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
关键词
Discrete Fourier transform; discrete Laplacian; boundary perturbations; diagonalization; generalized Schur polynomials; ORTHOGONAL POLYNOMIALS; MODEL;
D O I
10.1090/proc/14036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the Plancherel formula for a four-parameter family of discrete Fourier transforms and their multivariate generalizations stemming from corresponding generalized Schur polynomials. For special choices of the parameters, this recovers the sixteen classic discrete sine-and cosine transforms DST-1, ... , DST-8 and DCT-1, ... , DCT-8, as well as recently studied (anti) symmetric multivariate generalizations thereof.
引用
收藏
页码:3459 / 3472
页数:14
相关论文
共 50 条
  • [1] Discrete Fourier Transform and Extended Modified Hermite Polynomials
    Malekar, R. A.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 557 - 563
  • [2] Generalized Discrete Fourier Transform With Nonlinear Phase
    Akansu, Ali N.
    Agirman-Tosun, Handan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (09) : 4547 - 4556
  • [3] Generalized Discrete Fourier Transform: Theory and Design Methods
    Akansu, Ali N.
    Agirman-Tosun, Handan
    2009 IEEE SARNOFF SYMPOSIUM, CONFERENCE PROCEEDINGS, 2009, : 551 - 557
  • [4] Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform
    Janssen, Augustus J. E. M.
    Dirksen, Peter
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2007, 2
  • [5] A discrete Fourier transform associated with the affine Hecke algebra
    van Diejen, J. F.
    Emsiz, E.
    ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (01) : 24 - 38
  • [6] On the generalized Fourier transform
    Abreu-Blaya, Ricardo
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (16) : 16709 - 16733
  • [7] On a Discrete Number Operator Associated with the 5D Discrete Fourier Transform
    Atakishiyeva, M. K.
    Atakishiyev, N. M.
    Mendez Franco, J.
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, ICDDEA 2015, 2016, 164 : 273 - 292
  • [8] THE FINITE FOURIER TRANSFORM OF CLASSICAL POLYNOMIALS
    Dixit, Atul
    Jiu, Lin
    Moll, Victor H.
    Vignat, Christophe
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 98 (02) : 145 - 160
  • [9] Uniqueness of the discrete Fourier transform
    Baraquin, Isabelle
    Ratier, Nicolas
    SIGNAL PROCESSING, 2023, 209
  • [10] On the diagonalization of the discrete Fourier transform
    Gurevich, Shamgar
    Hadani, Ronny
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (01) : 87 - 99