Wright functions of the second kind and Whittaker functions

被引:141
作者
Mainardi, Francesco [1 ,2 ]
Paris, Richard B. [3 ]
Consiglio, Armando [4 ,5 ]
机构
[1] Univ Bologna, Dept Phys & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, Via Irnerio 46, I-40126 Bologna, Italy
[3] Univ Abertay, Div Comp & Math, Dundee DD1 1HG, Scotland
[4] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[5] Univ Wurzburg, Wurzburg Dresden Cluster Excellence ct qmat, D-97074 Wurzburg, Germany
关键词
Fractional calculus; Wright functions; Whittaker functions; Hypergeometric functions; Laplace transform;
D O I
10.1007/s13540-022-00042-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of higher transcendental functions, the Wright functions of the second kind have increased their relevance resulting from their applications in probability theory and, in particular, in fractional diffusion processes. Here, these functions are compared with the well-known Whittaker functions in some special cases of fractional order. In addition, we point out two erroneous representations in the literature.
引用
收藏
页码:858 / 875
页数:18
相关论文
共 30 条
[1]  
Aceto L., E PRINT ARXIV2202003
[2]  
[Anonymous], 1974, Introduction to the Theory and Application of the Laplace Transformation
[3]  
[Anonymous], 1995, TRANSFORM METHODS SP
[4]  
[Anonymous], ANN GEOFISICA
[5]   Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s-μ exp(-sν) [J].
Apelblat, Alexander ;
Mainardi, Francesco .
SYMMETRY-BASEL, 2021, 13 (02) :1-15
[6]   Estimation and Simulation for the M-Wright Function [J].
Cahoy, Dexter O. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (08) :1466-1477
[7]  
Consiglio Armando, 2019, WSEAS Transactions on Mathematics, V18, P389
[8]  
Consiglio A, 2021, SEMA SIMAI SPRING S, V26, P133, DOI 10.1007/978-3-030-69236-0_8
[9]  
Erdelyi A., 1957, Asymptotic forms of Whittakers confluent hypergeometric functions, V25, P1
[10]  
Gorenflo R., 1999, FRACTIONAL CALCULUS, V2, P383