Salient Object Detection Combining a Self-Attention Module and a Feature Pyramid Network

被引:14
|
作者
Ren, Guangyu [1 ]
Dai, Tianhong [1 ]
Barmpoutis, Panagiotis [1 ]
Stathaki, Tania [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
关键词
salient object detection; pyramid self-attention module; fully convolution network; feature pyramid network;
D O I
10.3390/electronics9101702
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Salient object detection has achieved great improvements by using the Fully Convolutional Networks (FCNs). However, the FCN-based U-shape architecture may cause dilution problems in the high-level semantic information during the up-sample operations in the top-down pathway. Thus, it can weaken the ability of salient object localization and produce degraded boundaries. To this end, in order to overcome this limitation, we propose a novel pyramid self-attention module (PSAM) and the adoption of an independent feature-complementing strategy. In PSAM, self-attention layers are equipped after multi-scale pyramid features to capture richer high-level features and bring larger receptive fields to the model. In addition, a channel-wise attention module is also employed to reduce the redundant features of the FPN and provide refined results. Experimental analysis demonstrates that the proposed PSAM effectively contributes to the whole model so that it outperforms state-of-the-art results over five challenging datasets. Finally, quantitative results show that PSAM generates accurate predictions and integral salient maps, which can provide further help to other computer vision tasks, such as object detection and semantic segmentation.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Pyramid Constrained Self-Attention Network for Fast Video Salient Object Detection
    Gu, Yuchao
    Wang, Lijuan
    Wang, Ziqin
    Liu, Yun
    Cheng, Ming-Ming
    Lu, Shao-Ping
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10869 - 10876
  • [2] CAG-FPN: CHANNEL SELF-ATTENTION GUIDED FEATURE PYRAMID NETWORK FOR OBJECT DETECTION
    Chang, Jie
    Dai, Huhe
    Zheng, Yuan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2024), 2024, : 9616 - 9620
  • [3] Annular Feature Pyramid Network for Salient Object Detection
    Zheng, Tao
    Li, Bo
    Liu, Jiajia
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 1 - 6
  • [4] S-FEATURE PYRAMID NETWORK AND ATTENTION MODULE FOR SMALL OBJECT DETECTION
    Wang, Chuntao
    Dong, Pengcheng
    Sun, Jiande
    Lu, Zhenyong
    Zhang, Kai
    Wan, Wenbo
    2023 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW, 2023,
  • [5] Cross-stage feature fusion and efficient self-attention for salient object detection
    Xia, Xiaofeng
    Ma, Yingdong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 104
  • [6] Salient Object Detection with Pyramid Attention and Salient Edges
    Wang, Wenguan
    Zhao, Shuyang
    Shen, Jianbing
    Hoi, Steven C. H.
    Borji, Ali
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1448 - 1457
  • [7] Quasi-Equilibrium Feature Pyramid Network for Salient Object Detection
    Song, Yue
    Tang, Hao
    Zhao, Mengyi
    Sebe, Nicu
    Wang, Wei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7144 - 7153
  • [8] A pooling-based feature pyramid network for salient object detection
    Shi, Caijuan
    Zhang, Weiming
    Duan, Changyu
    Chen, Houru
    IMAGE AND VISION COMPUTING, 2021, 107
  • [9] Cross-Layer Feature Pyramid Network for Salient Object Detection
    Li, Zun
    Lang, Congyan
    Liew, Jun Hao
    Li, Yidong
    Hou, Qibin
    Feng, Jiashi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4587 - 4598
  • [10] Dual pyramid network for salient object detection
    Xu, Xuemiao
    Chen, Jiaxing
    Zhang, Huaidong
    Han, Guoqiang
    NEUROCOMPUTING, 2020, 375 : 113 - 123