Initial measures for the stochastic heat equation

被引:16
作者
Conus, Daniel [1 ]
Joseph, Mathew [2 ]
Khoshnevisan, Davar [2 ]
Shiu, Shang-Yuan [3 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Acad Sinica, Inst Math, Taipei 10617, Taiwan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2014年 / 50卷 / 01期
基金
美国国家科学基金会;
关键词
The stochastic heat equation; Singular initial data;
D O I
10.1214/12-AIHP505
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of nonlinear stochastic heat equations of the form partial derivative(t)u = Lu + sigma(u)(W)over dot, where (W)over dot denotes space time white noise, L the generator of a symmetric Levy process on R, and sigma is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u(0). Tight a priori bounds on the moments of the solution are also obtained. In the particular case that L f = c '' for some c> 0, we prove that if up is a finite measure of compact support, then the solution is with probability one a bounded function for all times t > 0.
引用
收藏
页码:136 / 153
页数:18
相关论文
共 23 条
  • [1] [Anonymous], 2003, Electronic Journal of Probability, DOI DOI 10.1214/EJP.V8-123
  • [2] THE STOCHASTIC HEAT-EQUATION - FEYNMAN-KAC FORMULA AND INTERMITTENCE
    BERTINI, L
    CANCRINI, N
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) : 1377 - 1401
  • [3] Borodin A., 2012, PREPRINT
  • [4] MARTINGALE TRANSFORMS
    BURKHOLD.DL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06): : 1494 - &
  • [5] Burkholder D.L., 1972, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, V2, P223
  • [6] EXTRAPOLATION AND INTERPOLATION OF QUASI-LINEAR OPERATORS ON MARTINGALES
    BURKHOLDER, DL
    GUNDY, RF
    [J]. ACTA MATHEMATICA UPPSALA, 1970, 124 (3-4): : 249 - +
  • [7] LP ESTIMATES ON ITERATED STOCHASTIC INTEGRALS
    CARLEN, E
    KREE, P
    [J]. ANNALS OF PROBABILITY, 1991, 19 (01) : 354 - 368
  • [8] CARMONA RA, 1994, MEM AM MATH SOC, V108, pR3
  • [9] Chen L., 2011, PREPRINT
  • [10] Conus D., ANN PROBAB IN PRESS