A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING

被引:208
作者
Huertas-Company, M. [1 ]
Gravet, R. [1 ]
Cabrera-Vives, G. [2 ,3 ,4 ]
Perez-Gonzalez, P. G. [5 ]
Kartaltepe, J. S. [6 ]
Barro, G. [7 ]
Bernardi, M. [8 ]
Mei, S. [1 ]
Shankar, F. [9 ]
Dimauro, P. [1 ]
Bell, E. F. [10 ]
Kocevski, D. [11 ]
Koo, D. C. [7 ]
Faber, S. M. [7 ]
Mcintosh, D. H. [12 ]
机构
[1] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-75014 Paris, France
[2] Univ Chile, Ctr Math Modeling, Santiago, Chile
[3] Univ Chile, Dept Comp Sci, Santiago, Chile
[4] AURA Observ Chile, La Serena, Chile
[5] Univ Complutense Madrid, Fac CC Fis, Dept Astrofis, E-28040 Madrid, Spain
[6] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY 14623 USA
[7] Univ Calif Santa Cruz, UCO Lick Observ, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA
[8] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[9] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[10] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
[11] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[12] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA
关键词
catalogs; galaxies: high-redshift; galaxies: structure; surveys; SUPPORT VECTOR MACHINES; GALAXIES; CLASSIFICATION; PHOTOMETRY; EVOLUTION; SEQUENCE;
D O I
10.1088/0067-0049/221/1/8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a catalog of visual-like H-band morphologies of similar to 50.000 galaxies (H-f160w < 24.5) in the 5 CANDELS fields (GOODS-N, GOODS-S, UDS, EGS, and COSMOS). Morphologies are estimated using Convolutional Neural Networks (ConvNets). The median redshift of the sample is < z > similar to 1.25. The algorithm is trained on GOODS-S, for which visual classifications are publicly available, and then applied to the other 4 fields. Following the CANDELS main morphology classification scheme, our model retrieves for each galaxy the probabilities of having a spheroid or a disk, presenting an irregularity, being compact or a point source, and being unclassifiable. ConvNets are able to predict the fractions of votes given to a galaxy image with zero bias and similar to 10% scatter. The fraction of mis-classifications is less than 1%. Our classification scheme represents a major improvement with respect to Concentration-Asymmetry-Smoothness-based methods, which hit a 20%-30% contamination limit at high z.
引用
收藏
页数:23
相关论文
共 26 条
[1]   The morphologies of distant galaxies .2. Classifications from the Hubble Space Telescope Medium Deep Survey [J].
Abraham, RG ;
vandenBergh, S ;
Glazebrook, K ;
Ellis, RS ;
Santiago, BX ;
Surma, P ;
Griffiths, RE .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1996, 107 (01) :1-&
[2]  
[Anonymous], IEEE C COMP VIS PATT
[3]  
[Anonymous], ARXIV14012455
[4]  
[Anonymous], 2014, INT J COMPUT VISION
[5]   DATA MINING AND MACHINE LEARNING IN ASTRONOMY [J].
Ball, Nicholas M. ;
Brunner, Robert J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07) :1049-1106
[6]   Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks [J].
Ball, NM ;
Loveday, J ;
Fukugita, M ;
Nakamura, O ;
Okamura, S ;
Brinkmann, J ;
Brunner, RJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (03) :1038-1046
[7]  
Bernardi M., 2012, ARXIV12116122
[8]  
Bertin E, 2012, ASTR SOC P, V461, P263
[9]   The asymmetry of galaxies: Physical morphology for nearby and high-redshift galaxies [J].
Conselice, CJ ;
Bershady, MA ;
Jangren, A .
ASTROPHYSICAL JOURNAL, 2000, 529 (02) :886-910
[10]   Rotation-invariant convolutional neural networks for galaxy morphology prediction [J].
Dieleman, Sander ;
Willett, Kyle W. ;
Dambre, Joni .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 450 (02) :1441-1459