Invariant Geometric Structures on Statistical Models

被引:2
作者
Schwachhoefer, Lorenz [1 ]
Ay, Nihat [2 ]
Jost, Juergen [2 ]
Hong Van Le [3 ]
机构
[1] Tech Univ Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
[2] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
[3] Math Inst ASCR, Prague 11567, Czech Republic
来源
GEOMETRIC SCIENCE OF INFORMATION, GSI 2015 | 2015年 / 9389卷
关键词
D O I
10.1007/978-3-319-25040-3_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We review the notion of parametrized measure models and tensor fields on them, which encompasses all statistical models considered by Chentsov [6], Amari [3] and Pistone-Sempi [10]. We give a complete description of n-tensor fields that are invariant under sufficient statistics. In the cases n = 2 and n = 3, the only such tensors are the Fisher metric and the Amari-Chentsov tensor. While this has been shown by Chentsov [7] and Campbell [5] in the case of finite measure spaces, our approach allows to generalize these results to the cases of infinite sample spaces and arbitrary n. Furthermore, we give a generalisation of the monotonicity theorem and discuss its consequences.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [21] On invariant properties of natural differential operators associated to geometric structures on Rn
    Tudoran, Razvan M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [22] BRST-INVARIANT DEFORMATIONS OF GEOMETRIC STRUCTURES IN TOPOLOGICAL FIELD THEORIES
    Bytsenko, A. A.
    Chaichian, M.
    Tureanu, A.
    Williams, F. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (16):
  • [23] Geometric Structures on Lie Groups with Flat Bi-invariant Metric
    Cortes, Vicente
    Schaefer, Lars
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 423 - 437
  • [24] The geometric structures and instability of entropic dynamical models
    Peng, Linyu
    Sun, Huafei
    Sun, Dandi
    Yi, Jin
    ADVANCES IN MATHEMATICS, 2011, 227 (01) : 459 - 471
  • [25] Almost-invariant sets and invariant manifolds - Connecting probabilistic and geometric descriptions of coherent structures in flows
    Froyland, Gary
    Padberg, Kathrin
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (16) : 1507 - 1523
  • [26] Statistical Appearance Models for Automatic Pose Invariant Face Recognition
    Sarfraz, M. Saquib
    Hellwich, Olaf
    2008 8TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2008), VOLS 1 AND 2, 2008, : 819 - 824
  • [27] PROPERTY OF MAXIMUM LIKELIHOOD ESTIMATORS FOR INVARIANT STATISTICAL-MODELS
    TAN, P
    DROSSOS, C
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (03): : 405 - 409
  • [28] INVARIANT STATISTICAL CONVERGENCE AND A-INVARIANT STATISTICAL CONVERGENCE
    NURAY, F
    SAVAS, E
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (03) : 267 - 274
  • [29] Discrete models and sign-invariant structures of matrices
    Il'ichev, VG
    Il'icheva, OA
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1998, 37 (04) : 615 - 621
  • [30] INVARIANT ASYMPTOTIC MODELS FOR NONLINEAR ELASTIC THIN STRUCTURES
    FOX, D
    RAOULT, A
    SIMO, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (02): : 235 - 240