STABILITY, EXISTENCE AND NON-EXISTENCE OF T-PERIODIC SOLUTIONS OF NONLINEAR DELAYED DIFFERENTIAL EQUATIONS WITH φ-LAPLACIAN

被引:1
作者
Amster, Pablo [1 ,2 ]
Kuna, Mariel Paula [1 ,2 ]
Santos, Dionicio [3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemt, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Nacl Ctr Prov Buenos Aires, Dept Matemat, Fac Ciencias Exactas, Del Pinto 399, RA-7000 Buenos Aires, DF, Argentina
关键词
Functional equations; Lyapunov-Krasovskii functional; global stability; boundedness; existence of periodic solutions; non-existence of periodic solutions; SUNFLOWER EQUATION; OSCILLATIONS; KIND;
D O I
10.3934/cpaa.2022070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a Lyapunov-Krasovskii functional, new results concerning the global stability, boundedness of solutions, existence and non-existence of T-periodic solutions for a kind of delayed equation for a phi-Laplacian operator are obtained. An application is given for the well known sunflower equation.
引用
收藏
页码:2723 / 2737
页数:15
相关论文
共 14 条
[1]  
Amster P, 2014, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-8893-4_1
[2]   On the existence of periodic oscillations for pendulum-type equations [J].
Angel Cid, J. .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :121-130
[3]  
Belyakov A., 1987, B CLASSE SCI AC ROY, V73, P405
[4]   STABILITY THEOREMS FOR NONAUTONOMOUS FUNCTIONAL-DIFFERENTIAL EQUATIONS BY LIAPUNOV FUNCTIONALS [J].
BURTON, T ;
HATVANI, L .
TOHOKU MATHEMATICAL JOURNAL, 1989, 41 (01) :65-104
[5]  
Burton T. A., 1985, Stability and Periodic Solutions of Ordinary and Functional Differential Equations
[6]   FORCED-OSCILLATIONS FOR THE SUNFLOWER EQUATION, ENTRAINMENT [J].
CASAL, A ;
SOMOLINOS, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (04) :397-414
[7]  
HUANG X., 1994, Chinese Sci. Bull., V39, P201
[8]  
Krasovskii N.N., 1963, Stability of Motion
[9]   Periodic solutions for a kind of Lienard equation [J].
Liu, Xin-Ge ;
Tang, Mei-Lan ;
Martin, Ralph R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) :263-275
[10]   Sufficient conditions for the existence of periodic solutions to some second order differential equations with a deviating argument [J].
Lu, SP ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :393-419