Predicting Alzheimer's Disease Using LSTM

被引:69
作者
Hong, Xin [1 ,2 ]
Lin, Rongjie [1 ]
Yang, Chenhui [1 ]
Zeng, Nianyin [3 ]
Cai, Chunting [1 ]
Gou, Jin [2 ]
Yang, Jane [4 ]
机构
[1] Xiamen Univ, Sch Informat Sci & Engn, Comp Sci Dept, Xiamen 361005, Fujian, Peoples R China
[2] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen 361021, Fujian, Peoples R China
[3] Xiamen Univ, Dept Instrumental & Elect Engn, Xiamen 361005, Fujian, Peoples R China
[4] Univ Calif San Diego, Coll 6, Cognit Sci Dept, San Diego, CA 92092 USA
关键词
Alzheimer's Disease; Prediction; LSTM; Time Sequence; Magnetic Resonance Imaging; MILD COGNITIVE IMPAIRMENT; DIAGNOSIS; DECLINE;
D O I
10.1109/ACCESS.2019.2919385
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Alzheimer's Disease (AD) is a chronic neurodegenerative disease. Early diagnosis will considerably decrease the risk of further deterioration. Unfortunately, current studies mainly focus on classifying the states of disease in its current stage, instead of predicting the possible development of the disease. Long short-term memory (LSTM) is a special kind of recurrent neural network, which might be able to connect previous information to the present task. Noticing that the temporal data for a patient are potentially meaningful for predicting the development of the disease, we propose a predicting model based on LSTM. Therefore an LSTM network, with fully connected layer and activation layers, is built to encode the temporal relation between features and the next stage of Alzheimer's Disease. The Experiments show that our model outperforms most of the existing models.
引用
收藏
页码:80893 / 80901
页数:9
相关论文
共 28 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[3]   Deep learning reveals Alzheimer's disease onset in MCI subjects: Results from an international challenge [J].
Amoroso, Nicola ;
Diacono, Domenico ;
Fanizzi, Annarita ;
La Rocca, Marianna ;
Monaco, Alfonso ;
Lombardi, Angela ;
Guaragnella, Cataldo ;
Bellotti, Roberto ;
Tangaro, Sabina .
JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 :3-9
[4]   Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease [J].
Bateman, Randall J. ;
Xiong, Chengjie ;
Benzinger, Tammie L. S. ;
Fagan, Anne M. ;
Goate, Alison ;
Fox, Nick C. ;
Marcus, Daniel S. ;
Cairns, Nigel J. ;
Xie, Xianyun ;
Blazey, Tyler M. ;
Holtzman, David M. ;
Santacruz, Anna ;
Buckles, Virginia ;
Oliver, Angela ;
Moulder, Krista ;
Aisen, Paul S. ;
Ghetti, Bernardino ;
Klunk, William E. ;
McDade, Eric ;
Martins, Ralph N. ;
Masters, Colin L. ;
Mayeux, Richard ;
Ringman, John M. ;
Rossor, Martin N. ;
Schofield, Peter R. ;
Sperling, Reisa A. ;
Salloway, Stephen ;
Morris, John C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 367 (09) :795-804
[5]   FUNCTIONAL MAPPING OF THE HUMAN VISUAL-CORTEX BY MAGNETIC-RESONANCE-IMAGING [J].
BELLIVEAU, JW ;
KENNEDY, DN ;
MCKINSTRY, RC ;
BUCHBINDER, BR ;
WEISSKOFF, RM ;
COHEN, MS ;
VEVEA, JM ;
BRADY, TJ ;
ROSEN, BR .
SCIENCE, 1991, 254 (5032) :716-719
[6]  
Bron E.E., 2018, ARXIV180503909
[7]   Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment [J].
Camus, V. ;
Payoux, P. ;
Barre, L. ;
Desgranges, B. ;
Voisin, T. ;
Tauber, C. ;
La Joie, R. ;
Tafani, M. ;
Hommet, C. ;
Chetelat, G. ;
Mondon, K. ;
de la Sayette, V. ;
Cottier, J. P. ;
Beaufils, E. ;
Ribeiro, M. J. ;
Gissot, V. ;
Vierron, E. ;
Vercouillie, J. ;
Vellas, B. ;
Eustache, F. ;
Guilloteau, D. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2012, 39 (04) :621-631
[8]   Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging [J].
Choi, Hongyoon ;
Jin, Kyong Hwan .
BEHAVIOURAL BRAIN RESEARCH, 2018, 344 :103-109
[9]  
Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1162/089976600300015015, 10.1049/cp:19991218]
[10]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]