Wrapping spheres with flat paper

被引:17
作者
Demaine, Erik D. [1 ]
Demaine, Martin L. [1 ]
Iacono, John [2 ]
Langerman, Stefan [3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] NYU, Polytech Inst, Dept Comp Sci & Engn, Brooklyn, NY 11201 USA
[3] Univ Libre Bruxelles, Dept Informat, B-1050 Brussels, Belgium
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2009年 / 42卷 / 08期
关键词
Folding; Contractive mapping; Sphere; Mozartkugel;
D O I
10.1016/j.comgeo.2008.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study wrappings of smooth (convex) surfaces by a flat piece of paper or foil. Such wrappings differ from standard mathematical origami because they require infinitely many infinitesimally small folds ("crumpling") in order to transform the flat sheet into a surface of nonzero curvature. Our goal is to find shapes that wrap a given surface, have small area and small perimeter (for efficient material usage), and the the plane (for efficient mass production). Our results focus on the case of wrapping a sphere. We characterize the smallest square that wraps the unit sphere, show that a 0.1% smaller equilateral triangle suffices, and find a 20% smaller shape contained in the equilateral triangle that still tiles the plane and has small perimeter. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:748 / 757
页数:10
相关论文
共 15 条
[1]  
ABEL Z, 2008, ARXIV08040986
[2]  
BENBERNOU N, 2004, 14 ANN FALL WORKSH C
[3]  
BURAGO YD, 1995, TRANSLATION RUSSIAN, V7, P76
[4]  
Catalano-Johnson Michael L., 2001, AM MATH MONTHLY, V108, p[81, 167]
[5]  
Demaine E., 2007, GEOMETRIC FOLDING AL
[6]   Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami [J].
Demaine, ED ;
Demaine, ML ;
Mitchell, JSB .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (01) :3-21
[7]  
Demaine ED, 2002, ORIGAMI3, P3
[8]  
DEMAINE ED, 2004, P 16 CAN C COMP GEOM, P64
[9]  
*FREE ENC WIK, MOZ
[10]  
*FREIE ENZ WIK, MOZ