Rate of convergence for certain families of summation-integral type operators

被引:14
|
作者
Gupta, V
Gupta, MK
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110045, India
[2] Ch Charan Singh Univ, Dept Math, Meerut 250004, Uttar Pradesh, India
关键词
linear positive operators; iterative combinations; Steklov mean; modulus of smoothness;
D O I
10.1016/j.jmaa.2004.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the rate of convergence for the iterative combinations of a certain family of linear positive operators in terms of higher-order integral modulus of smoothness. We have used the technique of linear approximating method, namely Steklov mean, to prove the main result. In the end, we propose some other sequences of linear positive operators and obtain the recurrence formulae for the central moments, Voronovskaja type asymptotic formulae and error estimations. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:608 / 618
页数:11
相关论文
共 30 条
  • [21] VORONOVSKAJA-TYPE THEOREM FOR CERTAIN GBS OPERATORS
    Pop, Ovidiu T.
    GLASNIK MATEMATICKI, 2008, 43 (01) : 179 - 194
  • [22] A NOTE ON RATE OF APPROXIMATION FOR CERTAIN BEZIER-DURRMEYER OPERATORS
    Gupta, Vijay
    Deo, Naokant
    MATEMATICKI VESNIK, 2011, 63 (01): : 27 - 32
  • [23] Uniform convergence with rates of smooth Gauss-Weierstrass singular integral operators
    Anastassiou, George A.
    Mezei, Razvan A.
    APPLICABLE ANALYSIS, 2009, 88 (07) : 1015 - 1037
  • [24] Quantitative results for the convergence of the iterates of some King type operators
    Birou, Marius Mihai
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (02): : 173 - 182
  • [25] Rate of convergence of a Kantorovich variant of the Meyer-Konig and Zeller operators
    Abel, U
    Gupta, V
    Ivan, M
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (01): : 135 - 146
  • [26] Approximation by Sza<acute accent>sz-integral type operators
    Kajla, Arun
    Berwal, Sahil
    Sehrawat, Priya
    FILOMAT, 2024, 38 (04) : 1317 - 1327
  • [27] Simultaneous Approximation of New Sequence of Integral Type Operators with Parameter δ0
    Mohammad, Ali Jassim
    Muslim, Hadeel Omar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04): : 1508 - 1523
  • [28] A Kantorovich Type Integral Modification of q- Bernstein-Schurer Operators
    Gairola, Asha Ram
    Mishra, Vishnu Narayan
    Singh, Karunesh Kumar
    FILOMAT, 2018, 32 (04) : 1335 - 1348
  • [29] On approximation process by certain modified Dunkl generalization of Szasz-Beta type operators
    Atakut, Cigdem
    Karateke, Seda
    Buyukyazici, Ibrahim
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (01): : 9 - 18
  • [30] Global smoothness and uniform convergence of smooth Poisson-Cauchy type singular operators
    Anastassiou, George A.
    Mezei, Razvan A.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (05) : 1718 - 1731