Numerical evidence of hyperscaling violation in wetting transitions of the random-bond Ising model in d=2 dimensions

被引:0
作者
Albano, Ezequiel V. [1 ,2 ]
Luque, Luciana [1 ,2 ]
Trobo, Marta L. [1 ,2 ]
Binder, Kurt [3 ]
机构
[1] UNLP, Inst Fis Liquidos & Sistemas Biol IFLYSIB, CCT CONICET La Plata, Calle 59 789, RA-1900 La Plata, Buenos Aires, Argentina
[2] Univ Nacl La Plata, Dept Fis, Fac Ciencias Exactas, La Plata, Buenos Aires, Argentina
[3] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany
关键词
RENORMALIZATION; INTERFACES; BEHAVIOR; WALLS;
D O I
10.1103/PhysRevE.95.022801
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We performed extensive simulations of the random-bond Ising model confined between walls where competitive surface fields act. By properly taking the thermodynamic limit we unambiguously determined wetting transition points of the system, as extrapolation of localization-delocalization transitions of the interface between domains of different orientation driven by the respective fields. The finite-size scaling theory for wetting with short-range fields [E. V. Albano and K. Binder, Phys. Rev. Lett. 109, 036101 (2012)] establishes that the average magnetization of the sample, with critical exponent beta, is the proper order parameter for the study of wetting. While the hyperscaling relationship given by gamma + 2 beta = nu(parallel to) + nu(perpendicular to) requires beta = 1 / 2 (gamma = 4, nu(parallel to) = 3, and nu(perpendicular to) = 2), the thermodynamic scaling establishes that Delta(s) = gamma + beta, which in contrast requires beta = 0 (Delta(s) = 4), where gamma, nu(parallel to), nu(perpendicular to), and Delta(s) are the critical exponents of the susceptibility, the correlation lengths parallel and perpendicular to the interface, and the gap exponent, respectively. So, we formulate a finite-size scaling theory for wetting without hyperscaling and perform numerical simulations that provide strong evidence of hyperscaling violation (i.e., beta = 0) and a direct measurement of the susceptibility critical exponent gamma / nu(perpendicular to) = 2.0 +/- 0.2, in agreement with theoretical results for the strong fluctuation regime of wetting transitions with quenched noise.
引用
收藏
页数:8
相关论文
共 47 条
  • [41] Rowlinson J.S, 1982, MOL THEORY CAPILLARI
  • [42] Stinchombe R. B., 1983, PHASE TRANSITIONS CR, VVII, P151
  • [43] Finite-size scaling in Ising-like systems with quenched random fields: Evidence of hyperscaling violation
    Vink, R. L. C.
    Fischer, T.
    Binder, K.
    [J]. PHYSICAL REVIEW E, 2010, 82 (05):
  • [44] WIDOM B, 1972, PHASE TRANSITIONS CR, V2, P79
  • [45] UNIVERSALITY CLASSES FOR WETTING IN 2-DIMENSIONAL RANDOM-BOND SYSTEMS
    WUTTKE, J
    LIPOWSKY, R
    [J]. PHYSICAL REVIEW B, 1991, 44 (23): : 13042 - 13052
  • [46] Young AP., 1997, Spin Glasses and Random Fields
  • [47] ZIMAN JM, 1979, MODELS DISORDER THEO