Laser interference microscopy in erythrocyte study

被引:28
作者
Yusipovich, A. I. [1 ]
Parshina, E. Yu. [1 ]
Brysgalova, N. Yu. [1 ]
Brazhe, A. R. [1 ]
Brazhe, N. A. [1 ]
Lomakin, A. G. [2 ]
Levin, G. G. [2 ]
Maksimov, G. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Biol, Moscow 119991, Russia
[2] All Russian Sci Res Inst Opt & Phys Measurements, Moscow 119361, Russia
基金
俄罗斯基础研究基金会;
关键词
biomedical optical imaging; blood; cellular biophysics; laser applications in medicine; optical microscopy; pH; refractive index; DIGITAL HOLOGRAPHIC MICROSCOPY; REFRACTIVE-INDEX; OPTICAL CHARACTERISTICS; CELL MORPHOMETRY; PHASE MICROSCOPY; VOLUME; SHAPE; PH;
D O I
10.1063/1.3116609
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the laser interference microscopy (LIM) technique, one can measure phase height of cells-a variable proportional to the cell thickness and the difference in the refractive indices of the cell and the surrounding medium. This makes functional optical cell imaging possible, and estimation of shape, thickness, and area of erythrocytes feasible. In this paper, we studied changes in erythrocyte shape and volume with osmolarity and pH. Obtained from the LIM technique, erythrocyte phase heights and area values, as well as the hematocrit-measured erythrocyte volume, were used to estimate changes in the refractive index with osmolarity and pH. A comparison between the estimated refractive index with the refractive index, calculated in the assumption that it can only depend on the hemoglobin concentration in the cell, indicates that these two estimates are identical in the range of osmolarity (250-1000 mOsm) and pH (4.5-10.0) values. Thus, refractive index changes result exclusively from the changes in hemoglobin concentration with the changes in erythrocyte volume. Under these conditions, it is possible to estimate the amount of hemoglobin in an erythrocyte from its phase height and area, obtained from LIM.
引用
收藏
页数:7
相关论文
共 35 条
  • [1] Phase modulation microscope MIM-2.1 for measurements of surface microrelief. Results of measurements
    Andreev, VA
    Indukaev, KV
    Ioselev, OK
    Legkii, AI
    Lazarev, GL
    Orlov, DA
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2005, 26 (05) : 394 - 401
  • [2] INTERFERENCE MICROSCOPY AND MASS DETERMINATION
    BARER, R
    [J]. NATURE, 1952, 169 (4296) : 366 - 367
  • [3] BARER R, 1954, J MICROSC SCI, V95, P399
  • [4] Bennet AH., 1951, PHASE MICROSCOPY PRI
  • [5] BESSIS M, 1972, NOUV REV FR HEMATOL, V12, P721
  • [6] Bessis M., 1974, Corpuscles Atlas of Red Blood Cell Shapes
  • [7] Unraveling cell processes: Interference imaging interwoven with data analysis
    Brazhe, N. A.
    Brazhe, A. R.
    Pavlov, A. N.
    Erokhova, L. A.
    Yusipovich, A. I.
    Maksimov, G. V.
    Mosekilde, E.
    Sosnovtseva, O. V.
    [J]. JOURNAL OF BIOLOGICAL PHYSICS, 2006, 32 (3-4) : 191 - 208
  • [8] Single cell volume measurement by quantitative phase microscopy (QPM): A case study of erythrocyte morphology
    Curl, Claire L.
    Bellair, Catherine J.
    Harris, Peter J.
    Allman, Brendan E.
    Roberts, Ann
    Nugent, Keith A.
    Delbridge, Lea M. D.
    [J]. CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2006, 17 (5-6) : 193 - 200
  • [9] DUNN GA, 1995, J CELL SCI, V108, P1239
  • [10] SHAPE RESPONSE OF HUMAN ERYTHROCYTES TO ALTERED CELL PH
    GEDDE, MM
    YANG, EY
    HUESTIS, WH
    [J]. BLOOD, 1995, 86 (04) : 1595 - 1599