A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models

被引:9
作者
Craley, Jeff [1 ]
Johnson, Emily [2 ]
Venkataraman, Archana [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Med Inst, Dept Neurol, Baltimore, MD 21205 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III | 2018年 / 11072卷
关键词
D O I
10.1007/978-3-030-00931-1_55
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a novel Coupled Hidden Markov Model to detect epileptic seizures in multichannel electroencephalography (EEG) data. Our model defines a network of seizure propagation paths to capture both the temporal and spatial evolution of epileptic activity. To address the intractability introduced by the coupled interactions, we derive a variational inference procedure to efficiently infer the seizure evolution from spectral patterns in the EEG data. We validate our model on EEG aquired under clinical conditions in the Epilepsy Monitoring Unit of the Johns Hopkins Hospital. Using 5-fold cross validation, we demonstrate that our model outperforms three baseline approaches which rely on a classical detection framework. Our model also demonstrates the potential to localize seizure onset zones in focal epilepsy.
引用
收藏
页码:482 / 489
页数:8
相关论文
共 10 条
[1]   Automated diagnosis of epileptic EEG using entropies [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Chattopadhyay, Subhagata ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) :401-408
[2]  
[Anonymous], 2012, MACHINE LEARNING PRO
[3]   A novel seizure detection algorithm informed by hidden Markov model event states [J].
Baldassano, Steven ;
Wulsin, Drausin ;
Ung, Hoameng ;
Blevins, Tyler ;
Brown, Mesha-Gay ;
Fox, Emily ;
Litt, Brian .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (03)
[4]   Coupled hidden Markov models for complex action recognition [J].
Brand, M ;
Oliver, N ;
Pentland, A .
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, :994-999
[5]   Recurrent neural networks employing Lyapunov exponents for EEG signals classification [J].
Güler, NF ;
Übeyli, ED ;
Güler, I .
EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (03) :506-514
[6]   Incorporating structural information from the multichannel EEG improves patient-specific seizure detection [J].
Hunyadi, Borbala ;
Signoretto, Marco ;
Van Paesschen, Wim ;
Suykens, Johan A. K. ;
Van Huffel, Sabine ;
De Vos, Maarten .
CLINICAL NEUROPHYSIOLOGY, 2012, 123 (12) :2352-2361
[7]   10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems [J].
Jurcak, Valer ;
Tsuzuki, Daisuke ;
Dan, Ippeita .
NEUROIMAGE, 2007, 34 (04) :1600-1611
[8]  
Miller JW, 2014, NEUROL PRACT, P1, DOI 10.1002/9781118456989
[9]  
Shoeb A.H., 2010, PROC 27 INT C MACH L, P975, DOI DOI 10.5555/3104322.3104446
[10]   Automated Real-Time Epileptic Seizure Detection in Scalp EEG Recordings Using an Algorithm Based on Wavelet Packet Transform [J].
Zandi, Ali Shahidi ;
Javidan, Manouchehr ;
Dumont, Guy A. ;
Tafreshi, Reza .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (07) :1639-1651