Two-prey one-predator model

被引:51
作者
Elettreby, M. F. [1 ]
机构
[1] King Khalid Univ, Fac Sci, Dept Math, Abha 9004, Saudi Arabia
关键词
PREY SYSTEM; IMPULSIVE PERTURBATIONS; COMPLEX DYNAMICS; CHAOS;
D O I
10.1016/j.chaos.2007.06.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. fit the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2018 / 2027
页数:10
相关论文
共 21 条
[1]  
AHMED E, DYNAMICAL M IN PRESS
[2]  
[Anonymous], 1998, EVOLUTIONARY GAMES P
[3]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[4]  
CHOUDHURY R, 1992, CHAOS SOLITON FRACT, V2, P393
[5]  
Edelstein-Keshet L., 1988, Mathematical models in biology
[6]   PERSISTENCE IN MODELS OF 3 INTERACTING PREDATOR-PREY POPULATIONS [J].
FREEDMAN, HI ;
WALTMAN, P .
MATHEMATICAL BIOSCIENCES, 1984, 68 (02) :213-231
[7]  
HOLLING CS, 1965, MEM ENTOMOL SOC CAN, V45, P360
[8]   Complex dynamics of a Holling type II prey-predator system with state feedback control [J].
Jiang, Guirong ;
Lu, Qishao ;
Qian, Linning .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :448-461
[9]   Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control [J].
Liu, B ;
Zhang, YJ ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :123-134
[10]   Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator [J].
Liu, XN ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :311-320