CURRENTS AND FLAT CHAINS ASSOCIATED TO VARIFOLDS, WITH AN APPLICATION TO MEAN CURVATURE FLOW

被引:37
|
作者
White, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
INTEGRAL CURRENTS; THEOREM; PROOF;
D O I
10.1215/00127094-2009-019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove under suitable hypotheses that convergence of integral varifolds implies convergence of associated mod 2 flat chains and subsequential convergence of associated integer-multiplicity rectifiable currents. The convergence results imply restrictions oil the kinds of singularities that can occur in mean curvature flow.
引用
收藏
页码:41 / 62
页数:22
相关论文
共 50 条
  • [31] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [32] Curvature estimates for graphs with prescribed mean curvature and flat normal bundle
    Froehlich, Steffen
    Winklmann, Sven
    MANUSCRIPTA MATHEMATICA, 2007, 122 (02) : 149 - 162
  • [33] On the extension of the mean curvature flow
    Nam Q. Le
    Natasa Sesum
    Mathematische Zeitschrift, 2011, 267 : 583 - 604
  • [34] Gaussian mean curvature flow
    Borisenko, Alexander A.
    Miquel, Vicente
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 413 - 423
  • [35] Singularities of mean curvature flow
    Yuanlong Xin
    Science China(Mathematics), 2021, 64 (07) : 1349 - 1356
  • [36] Discrete mean curvature flow
    Imiya, A
    Eckhardt, U
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 477 - 482
  • [37] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [38] Spacelike Mean Curvature Flow
    Lambert, Ben
    Lotay, Jason D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1291 - 1359
  • [39] MEAN CURVATURE FLOW WITH SURGERY
    Haslhofer, Robert
    Kleiner, Bruce
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) : 1591 - 1626
  • [40] Mean Curvature Flow in -manifolds
    Schaefer, Lars
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 231 - 255