CURRENTS AND FLAT CHAINS ASSOCIATED TO VARIFOLDS, WITH AN APPLICATION TO MEAN CURVATURE FLOW

被引:37
|
作者
White, Brian [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
INTEGRAL CURRENTS; THEOREM; PROOF;
D O I
10.1215/00127094-2009-019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove under suitable hypotheses that convergence of integral varifolds implies convergence of associated mod 2 flat chains and subsequential convergence of associated integer-multiplicity rectifiable currents. The convergence results imply restrictions oil the kinds of singularities that can occur in mean curvature flow.
引用
收藏
页码:41 / 62
页数:22
相关论文
共 50 条
  • [1] Locality of the mean curvature of rectifiable varifolds
    Leonardi, Gian Paolo
    Masnou, Simon
    ADVANCES IN CALCULUS OF VARIATIONS, 2009, 2 (01) : 17 - 42
  • [2] REGULARITY THEOREMS FOR VARIFOLDS WITH MEAN-CURVATURE
    DUGGAN, JP
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (01) : 117 - 144
  • [3] Mean curvature motion of point cloud varifolds
    Buet, Blanche
    Rumpf, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (05) : 1773 - 1808
  • [4] Second order rectifiability of varifolds of bounded mean curvature
    Mario Santilli
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [5] Second order rectifiability of varifolds of bounded mean curvature
    Santilli, Mario
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (02)
  • [6] A barrier principle at infinity for varifolds with bounded mean curvature
    Gama, Eddygledson S.
    de Lira, Jorge H. S.
    Mari, Luciano
    de Medeiros, Adriano A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01): : 308 - 342
  • [7] Flat flow solution to the mean curvature flow with volume constraint
    Julin, Vesa
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (04) : 1543 - 1555
  • [8] Mean Curvature Flow in Asymptotically Flat Product Spacetimes
    Kroencke, Klaus
    Petersen, Oliver Lindblad
    Lubbe, Felix
    Marxen, Tobias
    Maurer, Wolfgang
    Meiser, Wolfgang
    Schnuerer, Oliver C.
    Szabo, Ron
    Vertman, Boris
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 5451 - 5479
  • [9] Mean Curvature Flow in Asymptotically Flat Product Spacetimes
    Klaus Kröncke
    Oliver Lindblad Petersen
    Felix Lubbe
    Tobias Marxen
    Wolfgang Maurer
    Wolfgang Meiser
    Oliver C. Schnürer
    Áron Szabó
    Boris Vertman
    The Journal of Geometric Analysis, 2021, 31 : 5451 - 5479