Smoothing estimates for the Schrodinger equation with unbounded potentials

被引:15
作者
D'Ancona, Piero [1 ]
Fanelli, Luca [1 ]
机构
[1] Univ Rome, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Decay estimates; Dispersive equations; Schrodinger equation; Time-dependent potential; Magnetic potential; EXTERNAL MAGNETIC-FIELD; REGULARITY; DECAY; SMOOTHNESS;
D O I
10.1016/j.jde.2009.03.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a local in time smoothing estimate for a magnetic Schrodinger equation with coefficients growing polynomially at spatial infinity. The assumptions on the magnetic field are gauge invariant and involve only the first two derivatives. The proof is based on the multiplier method and no pseudodifferential techniques are required. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4552 / 4567
页数:16
相关论文
共 29 条
[1]   Weak Dispersive Estimates for Schrodinger Equations with Long Range Potentials [J].
Barcelo, J. A. ;
Ruiz, A. ;
Vega, L. ;
Vilela, M. C. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (01) :74-105
[2]   Weighted estimates for the Helmholtz equation and some applications [J].
Barcelo, JA ;
Ruiz, A ;
Vega, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 150 (02) :356-382
[3]   DECAY AND REGULARITY FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M ;
KLAINERMAN, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :25-37
[5]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[6]   Smoothness of solutions for Schrodinger equations with unbounded potentials [J].
Doi, S .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (01) :175-221
[7]  
DOI S, 1994, J MATH KYOTO U, V34, P319, DOI 10.1215/kjm/1250519013
[8]  
FANELLI L, 2008, MAGNETIC VIRIAL IDEN
[9]  
KATO T., 1989, Reviews in Mathematical Physics, V1, P481, DOI DOI 10.1142/S0129055X89000171
[10]   OSCILLATORY INTEGRALS AND REGULARITY OF DISPERSIVE EQUATIONS [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (01) :33-69