On the geometry of the Painleve V equation and a Backlund transformation

被引:3
作者
Schief, WK [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1017/S1446181100007999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that an integrable class of helicoidal surfaces in Euclidean space E-3 is governed by the Painleve V equation with four arbitrary parameters. A connection with sphere congruences is exploited to construct in a purely geometric manner an associated Backlund transformation.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
[31]   Darboux-Backlund Transformations and Rational Solutions of the Painleve IV Equation [J].
Aratyn, H. ;
Gomes, J. F. ;
Zimerman, A. H. .
NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2010, 1212 :146-+
[32]   On the transformation group of the second Painleve equation [J].
Umemura, H .
NAGOYA MATHEMATICAL JOURNAL, 2000, 157 :15-46
[33]   THE PAINLEVE PROPERTY, LAX PAIR, AUTO-BACKLUND TRANSFORMATION AND RECURSION OPERATOR OF A PERTURBED KORTEWEG-DEVRIES EQUATION [J].
BABY, BV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09) :L555-L558
[34]   On the Gauge Transformation of the Sixth Painleve Equation [J].
Sasaki, Yoshikatsu .
PAINLEVE EQUATIONS AND RELATED TOPICS (2012), 2012, :137-150
[35]   Backlund transformation of partial differential equations from the Painleve-Gambier classification. II. Tzitzeica equation [J].
Conte, R ;
Musette, M ;
Grundland, AM .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :2092-2106
[36]   PAINLEVE PROPERTY, BACKLUND TRANSFORMATION, LAX PAIR AND SOLITON-LIKE SOLUTION FOR A VARIABLE-COEFFICIENT KP EQUATION [J].
ZHU, ZN .
PHYSICS LETTERS A, 1993, 182 (2-3) :277-281
[37]   Generalized x-dependent modified Korteweg-deVries equation: Painleve analysis, Backlund transformation and soliton solutions [J].
Porsezian, K .
PHYSICS LETTERS A, 1996, 221 (3-4) :163-166
[38]   Umemura polynomials for the Painleve V equation [J].
Noumi, M ;
Yamada, Y .
PHYSICS LETTERS A, 1998, 247 (1-2) :65-69
[39]   GENERALIZED BOUSSINESQ EQUATION AND KDV EQUATION - PAINLEVE PROPERTIES, BACKLUND-TRANSFORMATIONS AND LAX PAIRS [J].
LOU, SY .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1991, 34 (09) :1098-1108
[40]   Auto-Backlund Transformation, Lax Pairs and Painleve Property of u(t) [J].
Asokan, R. .
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (01) :111-116