On the geometry of the Painleve V equation and a Backlund transformation

被引:3
作者
Schief, WK [1 ]
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1017/S1446181100007999
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that an integrable class of helicoidal surfaces in Euclidean space E-3 is governed by the Painleve V equation with four arbitrary parameters. A connection with sphere congruences is exploited to construct in a purely geometric manner an associated Backlund transformation.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 50 条
[21]   On a Painleve II model in steady electrolysis: Application of a backlund transformation [J].
Rogers, C ;
Bassom, AP ;
Schief, WK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :367-381
[22]   On the Question of the Backlund Transformations and Jordan Generalizations of the Second Painleve Equation [J].
Yurov, Artyom, V ;
Yurov, Valerian A. .
SYMMETRY-BASEL, 2021, 13 (11)
[23]   New abundant exact solutions for MCBS-nMCBS equation: Painleve analysis and auto-Backlund transformation [J].
Singh, Shailendra ;
Ray, Santanu Saha .
EPL, 2022, 140 (06)
[24]   PAINLEVE ANALYSIS, LAX PAIR AND BACKLUND TRANSFORMATION FOR THE GROSS-PITAEVSKII EQUATION IN THE BOSE-EINSTEIN CONDENSATES [J].
Qi, Feng-Hua ;
Tian, Bo ;
Xu, Tao ;
Zhang, Hai-Qiang ;
Li, Li-Li ;
Meng, Xiang-Hua ;
Lue, Xing ;
Liu, Wen-Jun .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08) :1037-1047
[25]   Backlund transformation and applications for the Vakhnenko equation [J].
Xue, Min ;
Mao, Hui .
THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 210 (02) :172-183
[26]   Novikov equation: Backlund transformation and applications [J].
Mao, Hui .
THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 206 (02) :163-173
[27]   BACKLUND TRANSFORMATION OF THE CYLINDRICAL KDV EQUATION [J].
NAKAMURA, A .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (06) :2380-2386
[28]   GENERALIZED BOUSSINESQ EQUATION AND KdV EQUATION——PAINLEVE PROPERTIES,BACKLUND TRANSFORMATIONS AND LAX PAIRS [J].
楼森岳 .
Science China Mathematics, 1991, (09) :1098-1108
[29]   CHAIN OF THE BACKLUND TRANSFORMATION FOR THE KDV EQUATION [J].
NAKAMURA, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) :1608-1613
[30]   Schwarzian derivative, Painleve XXV-Ermakov equation, and Backlund transformations [J].
Carillo, Sandra ;
Chichurin, Alexander ;
Filipuk, Galina ;
Zullo, Federico .
MATHEMATISCHE NACHRICHTEN, 2024, 297 (01) :83-101