Global Attractivity and the Periodic Nature of Third Order Rational Difference Equation

被引:0
作者
Elsayed, E. M. [1 ,2 ]
Alzahrani, Faris [1 ]
Alayachi, H. S. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
stability; boundedness; periodicity; global attractor; difference equations; BEHAVIOR; DYNAMICS; STABILITY; SYSTEMS; FORM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main target of our study to cover the solutions behavior of the following difference equation x(n+1) = ax(n) + bx(n-1) + c + dxn-2/e + fxn-2, n=0, 1,..., where the parameters a, b, c, d, e and f are positive real numbers and the initial conditions x-2, x-1 and x(0) are positive real numbers.
引用
收藏
页码:1230 / 1241
页数:12
相关论文
共 57 条
[51]  
Ocalan Ozkan, 2014, Journal of Applied Mathematics and Informatics, V32, P843
[52]   On the difference equation yn+1 = A+Yn/yn-k with A < 0 [J].
Saleh, M. ;
Aloqeili, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) :359-363
[53]   Global asymptotic stability of a second-order nonlinear difference equation [J].
Su, YH ;
Li, WT .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 168 (02) :981-989
[54]  
Touafek N, 2012, HACET J MATH STAT, V41, P867
[55]  
Yalcinkaya I., 2009, FASCICULI MATH, V42, P141
[56]  
Yazlik Y, 2014, J COMPUT ANAL APPL, V16, P932
[57]  
Yazlik Y, 2014, J COMPUT ANAL APPL, V17, P584