Global Attractivity and the Periodic Nature of Third Order Rational Difference Equation

被引:0
作者
Elsayed, E. M. [1 ,2 ]
Alzahrani, Faris [1 ]
Alayachi, H. S. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
stability; boundedness; periodicity; global attractor; difference equations; BEHAVIOR; DYNAMICS; STABILITY; SYSTEMS; FORM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main target of our study to cover the solutions behavior of the following difference equation x(n+1) = ax(n) + bx(n-1) + c + dxn-2/e + fxn-2, n=0, 1,..., where the parameters a, b, c, d, e and f are positive real numbers and the initial conditions x-2, x-1 and x(0) are positive real numbers.
引用
收藏
页码:1230 / 1241
页数:12
相关论文
共 57 条
[1]   GLOBAL BEHAVIOR OF A THIRD ORDER DIFFERENCE EQUATION [J].
Abo-Zeid, R. ;
Al-Shabi, M. A. .
TAMKANG JOURNAL OF MATHEMATICS, 2012, 43 (03) :375-383
[2]  
Abo-Zeid R., 2015, INT J DIFFERENCE EQU, V10, P1
[3]   Dynamics of a rational difference equation [J].
Aloqeili, M .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (02) :768-774
[4]  
[Anonymous], J COMPUT THEOR NANOS
[5]  
[Anonymous], LIFE SCI J
[6]  
[Anonymous], 2015, J EGYPT MATH SOC
[7]  
[Anonymous], 2008, COMMUNICATIONS APPL
[8]   Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences [J].
Bedford, Eric ;
Kim, Kyounghee .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (03) :553-583
[9]  
Belhannache F, 2016, B MATH SOC SCI MATH, V59, P13
[10]  
Brett A., J DIFFERENCE EQUATIO, V2014