New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations

被引:164
|
作者
Ravichandran, C. [1 ]
Logeswari, K. [1 ]
Jarad, Fahd [2 ]
机构
[1] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore 641029, Tamil Nadu, India
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
关键词
Fractional differential equation; Atangana-Baleanu derivative; Fixed point techniques; MITTAG-LEFFLER KERNEL; MODEL;
D O I
10.1016/j.chaos.2019.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider integro-differential equations involving the recently explored Atangana-Baleanu fractional derivatives which contain the generalized Mittag-Leffler functions in their kernels. Utilizing fixed point techniques, we examine the existence and uniqueness of solutions to such equations in Banach spaces. Moreover, we consider an example and investigate numerical outcomes for various values of the fractional order. Then, we consider the stability of the tackled integro-differential equation in the frame of Ulam. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 50 条
  • [21] An epidemiological model for computer virus with Atangana-Baleanu fractional derivative
    Ravichandran, C.
    Logeswari, K.
    Khan, Aziz
    Abdeljawad, Thabet
    Gomez-Aguilar, J. F.
    RESULTS IN PHYSICS, 2023, 51
  • [22] EXISTENCE AND STABILITY THEORIES FOR A COUPLED SYSTEM INVOLVING p-LAPLACIAN OPERATOR OF A NONLINEAR ATANGANA-BALEANU FRACTIONAL DIFFERENTIAL EQUATIONS
    Al-Sadi, Wadhah
    Wei, Zhouchao
    Moroz, Irene
    Abdullah, Tariq Q. S.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [23] Atangana-Baleanu Semilinear Fractional Differential Inclusions With Infinite Delay: Existence and Approximate Controllability
    Williams, W. Kavitha
    Vijayakumar, V.
    Nisar, Kottakkaran Sooppy
    Shukla, Anurag
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (02):
  • [24] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [25] USE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE IN HELICAL FLOW OF A CIRCULAR PIPE
    Abro, Kashif Ali
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [26] Investigation of the l-problem of Moments for Fractional-order Equations with Atangana-Baleanu Derivative
    Postnov, S. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (03) : 691 - 696
  • [27] New Generalized Results for Modified Atangana-Baleanu Fractional Derivatives and Integral Operators
    Rahman, Gauhar
    Samraiz, Muhammad
    Yildiz, Cetin
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Mukheimer, Aiman
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [28] Chua's circuit model with Atangana-Baleanu derivative with fractional order
    Alkahtani, Badr Saad T.
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 547 - 551
  • [29] Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (15) : 1937 - 1952
  • [30] Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative
    Dokuyucu, Mustafa Ali
    Baleanu, Dumitru
    Celik, Ercan
    FILOMAT, 2018, 32 (16) : 5633 - 5643