New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations

被引:164
|
作者
Ravichandran, C. [1 ]
Logeswari, K. [1 ]
Jarad, Fahd [2 ]
机构
[1] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore 641029, Tamil Nadu, India
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
关键词
Fractional differential equation; Atangana-Baleanu derivative; Fixed point techniques; MITTAG-LEFFLER KERNEL; MODEL;
D O I
10.1016/j.chaos.2019.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider integro-differential equations involving the recently explored Atangana-Baleanu fractional derivatives which contain the generalized Mittag-Leffler functions in their kernels. Utilizing fixed point techniques, we examine the existence and uniqueness of solutions to such equations in Banach spaces. Moreover, we consider an example and investigate numerical outcomes for various values of the fractional order. Then, we consider the stability of the tackled integro-differential equation in the frame of Ulam. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 50 条
  • [1] Results on Impulsive Fractional Integro-Differential Equations Involving Atangana-Baleanu Derivative
    Karthikeyan, Kulandhivel
    Ege, Ozgur
    Karthikeyan, Panjayan
    FILOMAT, 2022, 36 (13) : 4617 - 4627
  • [2] Existence and data dependence results for fractional differential equations involving atangana-baleanu derivative
    Sutar, Sagar T.
    Kucche, Kishor D.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 647 - 663
  • [3] Fuzzy fractional delay integro-differential equation with the generalized Atangana-Baleanu fractional derivative
    Wang, Guotao
    Feng, Meihua
    Zhao, Xianghong
    Yuan, Hualei
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)
  • [4] Existence of Atangana-Baleanu fractional neutral Volterra integro-differential equations with non-instantaneous impulses
    Williams, W. Kavitha
    Vijayakumar, V.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 182
  • [5] Results on the existence, uniqueness, and controllability of neutral fractional differential equations in the sense of Atangana-Baleanu derivative
    Kalamani, Palaniyappan
    Raj, A. Stephan Antony
    Kumar, Pushpendra
    JOURNAL OF ANALYSIS, 2025, 33 (01) : 105 - 120
  • [6] Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators
    Arjunan, M. Mallika
    Hamiaz, A.
    Kavitha, V
    CHAOS SOLITONS & FRACTALS, 2021, 149
  • [7] Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems
    Williams, W. Kavitha
    Vijayakumar, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021,
  • [8] NUMERICAL ANALYSIS OF COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Koca, Ilknur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 475 - 486
  • [9] On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative
    Jarad, Fahd
    Abdeljawad, Thabet
    Hammouch, Zakia
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 16 - 20
  • [10] ANALYTICAL TREATMENTS TO SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MODIFIED ATANGANA-BALEANU DERIVATIVE
    Al-Refai, Mohammed
    Syam, Muhammed I.
    Baleanu, Dumitru
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)