Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation

被引:306
作者
Jin, Hongmei [1 ,2 ,3 ]
Capareda, Sergio [3 ]
Chang, Zhizhou [1 ,2 ]
Gao, Jun [4 ]
Xu, Yueding [1 ,2 ]
Zhang, Jianying [1 ,2 ]
机构
[1] Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Jiangsu Agr Waste Treatment & Recycle Engn Res Ct, Nanjing 210014, Jiangsu, Peoples R China
[2] Minist Agr, Key Lab Agroenvironm Downstream Yangtze Plain, Nanjing 210014, Jiangsu, Peoples R China
[3] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[4] Minist Environm Protect, Nanjing Inst Environm Sci, Nanjing 210042, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Municipal solid wastes; Biochar; KOH activation; Aqueous As(V); Adsorption property; PHYSICOCHEMICAL PROPERTIES; MAGNETIC BIOCHAR; ARSENIC REMOVAL; SOIL AMENDMENT; BATCH REACTOR; SEWAGE-SLUDGE; POTENTIAL USE; SWINE-MANURE; PYROLYSIS; WATER;
D O I
10.1016/j.biortech.2014.06.103
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Biochar converted from waste products is being considered as an alternative adsorbent for removal of aqueous heavy metal(loid)s. In this work, experimental and modeling investigations were conducted to examine the effect of biochars pyrolytically produced from municipal solid wastes on removing aqueous As(V) before and after activated by 2 M KOH solution. Results showed that the highest adsorption capacity of pristine biochars was 24.49 mg/g. The pseudo-second-order model and Langmuir adsorption isotherm model can preferably describe the adsorption process. The activated biochar showed enhanced As(V) adsorption ability with an adsorption capacity of 30.98 mg/g, which was more than 1.3 times of pristine biochars, and 2-10 times of modified biochars reported by other literatures. Increase of surface area and changes of porous texture, especially the functional groups on the surface of activated biochars are the major contributors to its more efficient adsorption of As(V). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:622 / 629
页数:8
相关论文
共 35 条
[1]   Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge [J].
Agrafioti, Evita ;
Kalderis, Dimitrios ;
Diamadopoulos, Evan .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2014, 133 :309-314
[2]   Biochar as a sorbent for contaminant management in soil and water: A review [J].
Ahmad, Mahtab ;
Rajapaksha, Anushka Upamali ;
Lim, Jung Eun ;
Zhang, Ming ;
Bolan, Nanthi ;
Mohan, Dinesh ;
Vithanage, Meththika ;
Lee, Sang Soo ;
Ok, Yong Sik .
CHEMOSPHERE, 2014, 99 :19-33
[3]  
[Anonymous], 2014, J ENVIRON HEALTH SCI, DOI DOI 10.1186/2052-336X-12-1
[4]   Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties [J].
Ates, Funda ;
Miskolczi, Norbert ;
Borsodi, Nikolett .
BIORESOURCE TECHNOLOGY, 2013, 133 :443-454
[5]   Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures [J].
Bernardo, M. ;
Lapa, N. ;
Goncalves, M. ;
Mendes, B. ;
Pinto, F. ;
Fonseca, I. ;
Lopes, H. .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 219 :196-202
[6]   Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine [J].
Cao, Xinde ;
Ma, Lena ;
Gao, Bin ;
Harris, Willie .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (09) :3285-3291
[7]   Assessing the potential for biofuel production of corn stover pyrolysis using a pressurized batch reactor [J].
Capunitan, Jewel A. ;
Capareda, Sergio C. .
FUEL, 2012, 95 (01) :563-572
[8]   A novel magnetic biochar efficiently sorbs organic pollutants and phosphate [J].
Chen, Baoliang ;
Chen, Zaiming ;
Lv, Shaofang .
BIORESOURCE TECHNOLOGY, 2011, 102 (02) :716-723
[9]   Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China [J].
Cheng, Hefa ;
Hu, Yuanan .
BIORESOURCE TECHNOLOGY, 2010, 101 (11) :3816-3824
[10]   APPLICATION OF ELOVICH EQUATION TO THE KINETICS OF PHOSPHATE RELEASE AND SORPTION IN SOILS [J].
CHIEN, SH ;
CLAYTON, WR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (02) :265-268