Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation

被引:119
作者
Vandal, Thomas [1 ]
Kodra, Evan [2 ]
Ganguly, Auroop R. [1 ]
机构
[1] Northeastern Univ, 360 Huntington Ave, Boston, MA 02115 USA
[2] RisQ Inc, Cambridge, MA 02139 USA
关键词
CLIMATE-CHANGE; NEURAL-NETWORKS; BIAS CORRECTION; REGRESSION; TEMPERATURE; STREAMFLOW; RESPONSES; SELECTION; IMPACTS; DENSITY;
D O I
10.1007/s00704-018-2613-3
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Statistical downscaling of Global Climate Models (GCMs) allows researchers to study local climate change effects decades into the future. A wide range of statistical models have been applied to downscaling GCMs but recent advances in machine learning have not been explored compared to traditional approaches. In this paper, we compare five Perfect Prognosis (PP) approaches, Ordinary Least Squares, Elastic-Net, and Support Vector Machine along with two machine learning methods Multi-task Sparse Structure Learning (MSSL) and Autoencoder Neural Networks. In addition, we introduce a hybrid Model Output Statistics and PP approach by modeling the residuals of Bias Correction Spatial Disaggregation (BCSD) with MSSL. Metrics to evaluate each method's ability to capture daily anomalies, large-scale climate shifts, and extremes are analyzed. Generally, we find inconsistent performance between PP methods in their ability to predict daily anomalies and extremes as well as monthly and annual precipitation. However, results suggest that L-1 sparsity constraints aid in reducing error through internal feature selection. The MSSL+BCSD coupling, when compared with BCSD, improved daily, monthly, and annual predictability but decreased performance at the extremes. Hence, these results suggest that the direct application of state-of-the-art machine learning methods to statistical downscaling does not provide direct improvements over simpler, longstanding approaches.
引用
收藏
页码:557 / 570
页数:14
相关论文
共 74 条
[11]   Assessing objective techniques for gauge-based analyses of global daily precipitation [J].
Chen, Mingyue ;
Shi, Wei ;
Xie, Pingping ;
Silva, Viviane B. S. ;
Kousky, Vernon E. ;
Higgins, R. Wayne ;
Janowiak, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D4)
[12]   Downscaling precipitation and temperature with temporal neural networks [J].
Coulibaly, P ;
Dibike, YB ;
Anctil, F .
JOURNAL OF HYDROMETEOROLOGY, 2005, 6 (04) :483-496
[13]   Properties of ceramic-reinforced aluminium matrix composites- A review [J].
Das D.K. ;
Mishra P.C. ;
Singh S. ;
Thakur R.K. .
International Journal of Mechanical and Materials Engineering, 2014, 9 (1)
[14]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[15]  
Drucker H, 1997, ADV NEUR IN, V9, P155
[16]   New estimates of future changes in extreme rainfall across the UK using regional climate model integrations.: 2.: Future estimates and use in impact studies [J].
Ekström, M ;
Fowler, HJ ;
Kilsby, CG ;
Jones, PD .
JOURNAL OF HYDROLOGY, 2005, 300 (1-4) :234-251
[17]   Climate change: The public health response [J].
Frumkin, Howard ;
Hess, Jeremy ;
Luber, George ;
Malilay, Josephine ;
McGeehin, Michael .
AMERICAN JOURNAL OF PUBLIC HEALTH, 2008, 98 (03) :435-445
[18]  
Ganguli P, 2015, ARXIV151108449
[19]   Statistical downscaling of GCM simulations to streamflow using relevance vector machine [J].
Ghosh, Subimal ;
Mujumdar, P. P. .
ADVANCES IN WATER RESOURCES, 2008, 31 (01) :132-146
[20]   SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output [J].
Ghosh, Subimal .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115