Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores

被引:250
|
作者
Nam, Sung-Wook [1 ]
Rooks, Michael J. [2 ]
Kim, Ki-Bum [1 ]
Rossnagel, Stephen M. [2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
ATOMIC LAYER DEPOSITION; ALUMINA TUBULAR MEMBRANES; DNA TRANSLOCATION; PORE REDUCTION; TRANSPORT; FABRICATION; MOLECULES;
D O I
10.1021/nl900309s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a new method to fabricate electrode-embedded multiple nanopore structures with sub-10 nm diameter, which is designed for electrofluidic applications such as ionic field effect transistors. Our method involves patterning pore structures on membranes using e-beam lithography and shrinking the pore diameter by a self-limiting atomic layer deposition process. We demonstrate that 70-80 nm diameter pores can be shrunk down to sub-10 nm diameter and that the ionic transport of KCl electrolyte can be efficiently manipulated by the embedded electrode within the membrane.
引用
收藏
页码:2044 / 2048
页数:5
相关论文
共 50 条
  • [21] Ion Transport in Sub-10 nm Nanofluidic Channels: Synthesis, Measurement, and Modeling
    Hwang, Junho
    Daiguji, Hirofumi
    ISRAEL JOURNAL OF CHEMISTRY, 2014, 54 (11-12) : 1509 - 1518
  • [22] A Novel Self-Ordered Sub-10 nm Nanopore Template for Nanotechnology
    Moyen, Eric
    Santinacci, Lionel
    Masson, Laurence
    Wulfhekel, Wulf
    Hanbuecken, Margrit
    ADVANCED MATERIALS, 2012, 24 (37) : 5094 - 5098
  • [23] Atomic layer deposition for spacer defined double patterning of sub-10 nm titanium dioxide features
    Dallorto, Stefano
    Staaks, Daniel
    Schwartzberg, Adam
    Yang, XiaoMin
    Lee, Kim Y.
    Rangelow, Ivo W.
    Cabrini, Stefano
    Olynick, Deirdre L.
    NANOTECHNOLOGY, 2018, 29 (40)
  • [24] Impact of asymmetric electrodes on ferroelectricity of sub-10 nm HZO thin films
    Chen, Hsing-Yang
    Jiang, Yu-Sen
    Chuang, Chun-Ho
    Mo, Chi-Lin
    Wang, Ting-Yun
    Lin, Hsin-Chih
    Chen, Miin-Jang
    NANOTECHNOLOGY, 2024, 35 (10)
  • [25] Use of a Columnar Metal Thin Film as a Nanosieve with Sub-10 nm Pores
    Choi, Dong-Hoon
    Han, Yong Duk
    Lee, Byung-Kee
    Choi, Seon-Jin
    Yoon, Hyun C.
    Lee, Dae-Sik
    Yoon, Jun-Bo
    ADVANCED MATERIALS, 2012, 24 (32) : 4408 - 4413
  • [26] Reduced tunnel-barrier height in sub-10 nm Au nanoelectrodes
    Curtis, Kellye S.
    Ford, Christopher J. B.
    Anderson, David
    Beere, Harvey E.
    Farrer, Ian
    Ritchie, David A.
    Jones, Geraint A. C.
    2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,
  • [27] Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition
    Chen, Borui
    Ji, Dengxin
    Cheney, Alec
    Zhang, Nan
    Song, Haomin
    Zeng, Xie
    Thomay, Tim
    Gan, Qiaoqiang
    Cartwright, Alexander
    NANOTECHNOLOGY, 2016, 27 (37)
  • [28] Sub-10 nm silicon ridge nanofabrication by advanced edge lithography for NIL applications
    Zhao, Yiping
    Berenschot, Erwin
    Jansen, Henri
    Tas, Niels
    Huskens, Jurriaan
    Elwenspoek, Miko
    MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) : 832 - 835
  • [29] Multisegmented Metallic Nanorods: Sub-10 nm Growth, Nanoscale Manipulation, and Subwavelength Imaging
    Ma, Yanhong
    Jiang, Wenyu
    Xu, Yuanqing
    Zhang, Yong
    ADVANCED MATERIALS, 2019, 31 (45)
  • [30] Sub-10 nm crystalline silicon nanostructures by electron beam induced deposition lithography
    Sychugov, I.
    Nakayama, Y.
    Mitsuishi, K.
    NANOTECHNOLOGY, 2010, 21 (28)