Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores

被引:250
|
作者
Nam, Sung-Wook [1 ]
Rooks, Michael J. [2 ]
Kim, Ki-Bum [1 ]
Rossnagel, Stephen M. [2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
ATOMIC LAYER DEPOSITION; ALUMINA TUBULAR MEMBRANES; DNA TRANSLOCATION; PORE REDUCTION; TRANSPORT; FABRICATION; MOLECULES;
D O I
10.1021/nl900309s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a new method to fabricate electrode-embedded multiple nanopore structures with sub-10 nm diameter, which is designed for electrofluidic applications such as ionic field effect transistors. Our method involves patterning pore structures on membranes using e-beam lithography and shrinking the pore diameter by a self-limiting atomic layer deposition process. We demonstrate that 70-80 nm diameter pores can be shrunk down to sub-10 nm diameter and that the ionic transport of KCl electrolyte can be efficiently manipulated by the embedded electrode within the membrane.
引用
收藏
页码:2044 / 2048
页数:5
相关论文
共 50 条
  • [1] Sub-10 nm junctionless carbon nanotube field-effect transistors with improved performance
    Tamersit, Khalil
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2020, 124
  • [2] Sub-10 nm transparent all-around-gated ambipolar ionic field effect transistor
    Lee, Seung-Hyun
    Lee, Hyomin
    Jin, Tianguang
    Park, Sungmin
    Yoon, Byung Jun
    Sung, Gun Yong
    Kim, Ki-Bum
    Kim, Sung Jae
    NANOSCALE, 2015, 7 (03) : 936 - 946
  • [3] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [4] Performance Upper Limit of sub-10 nm Monolayer MoS2 Transistors
    Ni, Zeyuan
    Ye, Meng
    Ma, Jianhua
    Wang, Yangyang
    Quhe, Ruge
    Zheng, Jiaxin
    Dai, Lun
    Yu, Dapeng
    Shi, Junjie
    Yang, Jinbo
    Watanabe, Satoshi
    Lu, Jing
    ADVANCED ELECTRONIC MATERIALS, 2016, 2 (09):
  • [5] Bilayer Tellurene: A Potential p-Type Channel Material for Sub-10 nm Transistors
    Li, Qiuhui
    Xu, Lin
    Liu, Shiqi
    Yang, Jie
    Fang, Shibo
    Li, Ying
    Ma, Jiachen
    Zhang, Zhiyong
    Quhe, Ruge
    Yang, Jinbo
    Lu, Jing
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (02)
  • [6] Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation
    Zheng, Jiaxin
    Wang, Lu
    Quhe, Ruge
    Liu, Qihang
    Li, Hong
    Yu, Dapeng
    Mei, Wai-Ning
    Shi, Junjie
    Gao, Zhengxiang
    Lu, Jing
    SCIENTIFIC REPORTS, 2013, 3
  • [7] Self-formation of sub-10 nm nanogaps based on silicidation
    Tang, Xiaohui
    Francis, Laurent A.
    Dutu, Constantin Augustin
    Reckinger, Nicolas
    Raskin, Jean-Pierre
    NANOTECHNOLOGY, 2014, 25 (11)
  • [8] Seedless Growth of Sub-10 nm Germanium Nanowires
    Hobbs, Richard G.
    Barth, Sven
    Petkov, Nikolay
    Zirngast, Michaele
    Marschner, Christoph
    Morris, Michael A.
    Holmes, Justin D.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (39) : 13742 - 13749
  • [9] Controllable Shrinking of Glass Capillary Nanopores Down to sub-10 nm by Wet-Chemical Silanization for Signal-Enhanced DNA Translocation
    Xu, Xiaolong
    Li, Chuanping
    Zhou, Ya
    Jin, Yongdong
    ACS SENSORS, 2017, 2 (10): : 1452 - 1457
  • [10] Direct visualization of fluid dynamics in sub-10 nm nanochannels
    Li, Huawei
    Zhong, Junjie
    Pang, Yuanjie
    Zandavi, Seyed Hadi
    Persad, Aaron Harrinarine
    Xu, Yi
    Mostowfi, Farshid
    Sinton, David
    NANOSCALE, 2017, 9 (27) : 9556 - 9561