A critical fractional Choquard-Kirchhoff problem with magnetic field

被引:101
|
作者
Xiang Mingqi [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Zhang, Binlin [4 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
基金
黑龙江省自然科学基金; 中国国家自然科学基金;
关键词
Choquard-Kirchhoff equation; fractional magnetic operator; variational methods; critical Sobolev exponent; NONLINEAR SCHRODINGER-EQUATION; POSITIVE SOLUTIONS; SEMICLASSICAL LIMIT; GROUND-STATE; EXISTENCE; LAPLACIAN;
D O I
10.1142/S0219199718500049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are interested in a fractional Choquard-Kirchhoff-type problem involving an external magnetic potential and a critical nonlinearity M(parallel to u parallel to(2)(s,A))[(-Delta)(A)(s) u + u] = lambda integral(RN) F(vertical bar u vertical bar(2))/vertical bar x-y vertical bar(alpha) dy f(vertical bar u vertical bar(2))u + vertical bar u vertical bar(2s*-2u) in R-N, parallel to u parallel to s,A = (integral integral(R2N) vertical bar u(x) - e(i(x-y).A(x+y/2))u(y)vertical bar(2)/vertical bar x-y vertical bar(N+2s) dxdy + integral(RN) vertical bar u vertical bar(2)dx)1/2 , where N > 2s with 0 < s < 1, M is the Kirchhoff function, A is the magnetic potential, (-Delta)(A)(s) is the fractional magnetic operator, f is a continuous function, F(vertical bar u vertical bar) = integral(vertical bar u vertical bar)(0) f(t)dt, lambda > 0 is a parameter, 0 < alpha < min{N,4s} and 2(s)* = 2N/N - 2s is the critical exponent of fractional Sobolev space. We first establish a fractional version of the concentration-compactness principle with magnetic field. Then, together with the mountain pass theorem, we obtain the existence of nontrivial radial solutions for the above problem in non-degenerate and degenerate cases.
引用
收藏
页数:36
相关论文
共 50 条
  • [11] Existence of ground states for fractional Choquard-Kirchhoff equations withmagnetic fields and critical exponents
    Guo, Zhenyu
    Zhao, Lujuan
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (02) : 468 - 483
  • [12] On a critical Choquard-Kirchhoff p-sub-Laplacian equation in Hn
    Liang, Sihua
    Pucci, Patrizia
    Song, Yueqiang
    Sun, Xueqi
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2024, 12 (01):
  • [13] Normalized ground states for a kind of Choquard-Kirchhoff equations with critical nonlinearities
    Fei, Jiayi
    Zhang, Qiongfen
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [14] ON MULTIPLICITY AND CONCENTRATION OF SOLUTIONS FOR FRACTIONAL p-LAPLACE CHOQUARD-KIRCHHOFF EQUATIONS
    Liang, Shuaishuai
    Liang, Sihua
    Shi, Shaoyun
    Nguyen, Thin Van
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2025, 30 (1-2) : 35 - 68
  • [15] Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth
    Tao, Lulu
    He, Rui
    Liang, Sihua
    Niu, Rui
    AIMS MATHEMATICS, 2022, 8 (02): : 3026 - 3048
  • [16] Critical fractional p-Kirchhoff type problem with a generalized Choquard nonlinearity
    Chen, Wenjing
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (12)
  • [17] Existence and multiplicity of solutions for a p(x)-Choquard-Kirchhoff problem involving critical growth and concave-convex nonlinearities
    Ma, Wei
    Zhang, Qiongfen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [18] Existence of ground states for fractional Choquard–Kirchhoff equations with magnetic fields and critical exponents
    Zhenyu Guo
    Lujuan Zhao
    Periodica Mathematica Hungarica, 2023, 87 : 468 - 483
  • [19] ON MULTI-BUMP SOLUTIONS FOR THE CHOQUARD-KIRCHHOFF EQUATIONS IN RN
    Liang, Shuaishuai
    Sun, Mingzhe
    Shi, Shaoyun
    Liang, Sihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023,
  • [20] Existence of Solutions for a Critical Choquard–Kirchhoff Problem with Variable Exponents
    Youpei Zhang
    Dongdong Qin
    The Journal of Geometric Analysis, 2023, 33