Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method

被引:80
作者
Molaeimanesh, G. R. [1 ]
Akbari, M. H. [1 ]
机构
[1] Shiraz Univ, Fuel Cell Res Ctr, Sch Mech Engn, Shiraz 7134851154, Iran
关键词
Multiphase flow; Microstructure; Porous media; Proton exchange membrane fuel cell; Lattice Boltzmann method; PTFE treatment; GAS-DIFFUSION LAYER; MEMBRANE FUEL-CELL; CARBON PAPER; TRANSPORT; MEDIA; SIMULATIONS; PERFORMANCE; MODEL;
D O I
10.1016/j.ijhydene.2014.03.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is believed by many that polymer electrolyte membrane fuel cells (PEMFCs) will have a widespread application since they offer important features such as low operating temperature, high power density, and easy scale up. However, operation of PEMFCs is faced with some technical challenges including water management which may lead to flooding of the electrodes. Treatment of the gas diffusion layer (GDL) with a highly hydrophobic material such as PTFE is a common strategy for mitigating this issue. Several investigations have been done to clarify solely the effect of PTFE content. However, effects of PTFE distribution, which can be achieved through different treatment methods, has not been well studied yet. Lattice Boltzmann method (LBM) is one of the best choices for such numerical studies due to its capability of modeling multiphase flow in the complicated microstructure of a porous GDL considering its non-homogeneous and anisotropic transport properties. In the present study, droplet removal from four GDLs with different PTFE distributions through an interdigitated flow field is investigated using LBM. The results demonstrate that regardless of PTFE distribution, the interfacial forces between any untreated carbon fiber and a water droplet will strongly dominate over other forces and hence will prevent its removal. Therefore, it is concluded that an effective water management may be achieved by a suitable treatment method such that no carbon fiber inside the GDL remains uncoated. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8401 / 8409
页数:9
相关论文
共 33 条
[1]  
Barbir F, 2006, ENG MAT PRO, P27
[2]   Examination of the influence of PTFE coating on the properties of carbon paper in polymer electrolyte fuel cells [J].
Bevers, D ;
Rogers, R ;
vonBradke, M .
JOURNAL OF POWER SOURCES, 1996, 63 (02) :193-201
[3]  
Bhatnagar PL, PHYS REV
[4]   Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields [J].
Chen, Li ;
Luan, Hui-Bao ;
He, Ya-Ling ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 51 :132-144
[5]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[6]   Numerical modeling and experimental study of the influence of GDL properties on performance in a PEMFC [J].
Chun, Jeong Hwan ;
Park, Ki Tae ;
Jo, Dong Hyun ;
Kim, Sang Gon ;
Kim, Sung Hyun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) :1837-1845
[7]   3D phase-differentiated GDL microstructure generation with binder and PTFE distributions [J].
Daino, Michael M. ;
Kandlikar, Satish G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (06) :5180-5189
[8]   LATTICE BOLTZMANN MODEL OF IMMISCIBLE FLUIDS [J].
GUNSTENSEN, AK ;
ROTHMAN, DH ;
ZALESKI, S ;
ZANETTI, G .
PHYSICAL REVIEW A, 1991, 43 (08) :4320-4327
[9]   Capillary pressures in carbon paper gas diffusion layers having hydrophilic and hydrophobic pores [J].
Hao, Liang ;
Cheng, Ping .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (1-3) :133-139
[10]   Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method [J].
Hao, Liang ;
Cheng, Ping .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (9-10) :1908-1913