Frictional Behavior of Atomically Thin Sheets: Hexagonal-Shaped Graphene Islands Grown on Copper by Chemical Vapor Deposition

被引:146
作者
Egberts, Philip [1 ]
Han, Gang Hee [2 ]
Liu, Xin Z. [1 ]
Johnson, A. T. Charlie [2 ]
Carpick, Robert W. [1 ]
机构
[1] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
atomic force microscope (AFM); graphene; copper; nanotribology chemical vapor deposition (CVD); FORCE MICROSCOPE CANTILEVERS; EPITAXIAL GRAPHENE; MONOLAYER GRAPHENE; GRAIN-BOUNDARIES; FILMS; FOILS; CU; CALIBRATION; NANOSCALE; INTERPLAY;
D O I
10.1021/nn501085g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis In the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.
引用
收藏
页码:5010 / 5021
页数:12
相关论文
共 45 条
[1]   Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene [J].
Ago, Hiroki ;
Ogawa, Yui ;
Tsuji, Masaharu ;
Mizuno, Seigi ;
Hibino, Hiroki .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16) :2228-2236
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Graphene growth on metal surfaces [J].
Bartelt, N. C. ;
McCarty, K. F. .
MRS BULLETIN, 2012, 37 (12) :1158-1165
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Observations of Early Stage Graphene Growth on Copper [J].
Celebi, K. ;
Cole, M. T. ;
Teo, K. B. K. ;
Park, H. G. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (01) :K1-K4
[6]   Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing [J].
Cho, Jongweon ;
Gao, Li ;
Tian, Jifa ;
Cao, Helin ;
Wu, Wei ;
Yu, Qingkai ;
Yitamben, Esmeralda N. ;
Fisher, Brandon ;
Guest, Jeffrey R. ;
Chen, Yong P. ;
Guisinger, Nathan P. .
ACS NANO, 2011, 5 (05) :3607-3613
[7]  
Deng Z, 2012, NAT MATER, V11, P1032, DOI [10.1038/NMAT3452, 10.1038/nmat3452]
[8]   Environmental dependence of atomic-scale friction at graphite surface steps [J].
Egberts, Philip ;
Ye, Zhijiang ;
Liu, Xin Z. ;
Dong, Yalin ;
Martini, Ashlie ;
Carpick, Robert W. .
PHYSICAL REVIEW B, 2013, 88 (03)
[9]   Growth of graphene underlayers by chemical vapor deposition [J].
Fabiane, Mopeli ;
Khamlich, Saleh ;
Bello, Abdulhakeem ;
Dangbegnon, Julien ;
Momodu, Damilola ;
Johnson, A. T. Charlie ;
Manyala, Ncholu .
AIP ADVANCES, 2013, 3 (11)
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)