A bifurcation analysis of planar nilpotent reversible systems

被引:5
作者
Algaba, A. [1 ]
Freire, E. [2 ]
Gamero, E. [2 ]
Garcia, C. [1 ]
机构
[1] Univ Huelva, Fac Ciencias, Dept Math, Huelva, Spain
[2] Univ Seville, Dept Appl Math 2, ETSI, Seville, Spain
关键词
Takens-Bogdanov bifurcation; Reversible systems; Teixeira singularity; 2-FOLD SINGULARITY; NORMAL FORMS;
D O I
10.1007/s11071-016-3082-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we present a bifurcation analysis for planar nilpotent reversible systems with an equilibrium point located at the origin. We study candidates for the universal unfoldings of the codimension-one non-degenerate cases, as well as a pair of codimension-two degenerate cases, and a codimension-three degenerate case, where a rich bifurcation scenario is pointed out.
引用
收藏
页码:835 / 849
页数:15
相关论文
共 23 条
[1]   An algorithm for computing quasi-homogeneous formal normal forms under equivalence [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (03) :335-359
[2]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[3]  
[Anonymous], 1997, NONLINEAR OSCILLATIO
[4]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[5]  
ARNOLD VI, 1982, GEOMETRICAL METHODS
[6]   Nonlinear Analysis of Interconnected Power Converters: A Case Study [J].
Benadero, Luis ;
Cristiano, Rony ;
Pagano, Daniel J. ;
Ponce, Enrique .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2015, 5 (03) :326-335
[7]  
Bogdanov R.I., 1976, T SEM PETROVSK, V2, P37
[8]  
Bruno A.D., 1989, Local Methods in Nonlinear Differential Equations
[9]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[10]   Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth Flows [J].
Colombo, Alessandro ;
Jeffrey, Mike R. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02) :423-451