Machine Learning for Performance Enhancement of Molecular Dynamics Simulations

被引:13
作者
Kadupitiya, J. C. S. [1 ]
Fox, Geoffrey C. [1 ]
Jadhao, Vikram [1 ]
机构
[1] Indiana Univ, Intelligent Syst Engn, Bloomington, IN 47408 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2019, PT II | 2019年 / 11537卷
基金
美国国家科学基金会;
关键词
Machine learning; Molecular dynamics simulations; Parallel computing; Scientific computing; Clouds;
D O I
10.1007/978-3-030-22741-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore the idea of integrating machine learning with simulations to enhance the performance of the simulation and improve its usability for research and education. The idea is illustrated using hybrid OpenMP/MPI parallelized molecular dynamics simulations designed to extract the distribution of ions in nanoconfinement. We find that an artificial neural network based regression model successfully learns the desired features associated with the output ionic density profiles and rapidly generates predictions that are in excellent agreement with the results from explicit molecular dynamics simulations. The results demonstrate that the performance gains of parallel computing can be further enhanced by using machine learning.
引用
收藏
页码:116 / 130
页数:15
相关论文
共 25 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Electrostatic potential inside ionic solutions confined by dielectrics: a variational approach [J].
Allen, R ;
Hansen, JP ;
Melchionna, S .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (19) :4177-4186
[3]   Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems [J].
Boda, D ;
Gillespie, D ;
Nonner, W ;
Henderson, D ;
Eisenberg, B .
PHYSICAL REVIEW E, 2004, 69 (04) :10
[4]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[5]  
Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238
[6]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[7]  
Chollet F., 2015, Keras
[8]   Dielectric boundary effects on the interaction between planar charged surfaces with counterions only [J].
dos Santos, Alexandre P. ;
Netz, Roland R. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (16)
[9]   Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance [J].
Feng, Guang ;
Qiao, Rui ;
Huang, Jingsong ;
Sumpter, Bobby G. ;
Meunier, Vincent .
ACS NANO, 2010, 4 (04) :2382-2390
[10]   Machine learning and data science in soft materials engineering [J].
Ferguson, Andrew L. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (04)