Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors

被引:171
作者
Koh, Yee Kan [1 ,2 ]
Singer, Suzanne L. [3 ]
Kim, Woochul [4 ]
Zide, Joshua M. O. [5 ]
Lu, Hong [6 ]
Cahill, David G. [1 ,2 ]
Majumdar, Arun [3 ]
Gossard, Arthur C. [6 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[4] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[5] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
[6] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
aluminium compounds; erbium compounds; gallium arsenide; III-V semiconductors; indium compounds; nanoparticles; semiconductor epitaxial layers; thermal conductivity; thermoreflectance; FILMS; REDUCTION; TRANSPORT;
D O I
10.1063/1.3078808
中图分类号
O59 [应用物理学];
学科分类号
摘要
The 3 omega technique and time-domain thermoreflectance (TDTR) are two experimental methods capable of measuring the cross-plane thermal conductivity of thin films. We compare the cross-plane thermal conductivity measured by the 3 omega method and TDTR on epitaxial (In0.52Al0.48)(x)(In0.53Ga0.47)(1-x)As alloy layers with embedded ErAs nanoparticles. Thermal conductivities measured by TDTR at low modulation frequencies (similar to 1 MHz) are typically in good agreement with thermal conductivities measured by the 3 omega method. We discuss the accuracy and limitations of both methods and provide guidelines for estimating uncertainties for each approach.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Thermal conductivity of symmetrically strained Si/Ge superlattices [J].
Borca-Tasciuc, T ;
Liu, WL ;
Liu, JL ;
Zeng, TF ;
Song, DW ;
Moore, CD ;
Chen, G ;
Wang, KL ;
Goorsky, MS ;
Radetic, T ;
Gronsky, R ;
Koga, T ;
Dresselhaus, MS .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (03) :199-206
[2]   Data reduction in 3ω method for thin-film thermal conductivity determination [J].
Borca-Tasciuc, T ;
Kumar, AR ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) :2139-2147
[3]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[4]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[5]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[6]   Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings [J].
Cahill, DG ;
Lee, SM ;
Selinder, TI .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) :5783-5786
[7]   THERMAL-CONDUCTIVITY OF AMORPHOUS SOLIDS ABOVE THE PLATEAU [J].
CAHILL, DG ;
POHL, RO .
PHYSICAL REVIEW B, 1987, 35 (08) :4067-4073
[8]   Ultralow thermal conductivity in disordered, layered WSe2 crystals [J].
Chiritescu, Catalin ;
Cahill, David G. ;
Nguyen, Ngoc ;
Johnson, David ;
Bodapati, Arun ;
Keblinski, Pawel ;
Zschack, Paul .
SCIENCE, 2007, 315 (5810) :351-353
[9]   Ultra-low thermal conductivity in W/Al2O3 nanolaminates [J].
Costescu, RM ;
Cahill, DG ;
Fabreguette, FH ;
Sechrist, ZA ;
George, SM .
SCIENCE, 2004, 303 (5660) :989-990
[10]   Thermal conductance of epitaxial interfaces [J].
Costescu, RM ;
Wall, MA ;
Cahill, DG .
PHYSICAL REVIEW B, 2003, 67 (05)