High Mobility Anisotropic Black Phosphorus Nanoribbon Field-Effect Transistor

被引:85
作者
Feng, Xuewei [1 ,2 ]
Huang, Xin [1 ,2 ]
Chen, Li [1 ,2 ]
Tan, Wee Chong [1 ,2 ]
Wang, Lin [1 ,2 ]
Ang, Kah-Wee [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117583, Singapore
[2] Natl Univ Singapore, Ctr Adv Mat 2D, 6 Sci Dr 2, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
anisotropy; black phosphorus; nanoribbons; phosphorene; transistors; PHOTORESPONSE; SEMICONDUCTOR; ENHANCEMENT; ORIENTATION; TRANSITION; TRANSPORT;
D O I
10.1002/adfm.201801524
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving excellent electrostatic control and immunity to short channel effects are the formidable challenges in ultrascaled devices. 3D device architectures, such as nanoribbon, have successfully mitigated these problems by achieving uniform top- and side-wall control of the channel. Here, by leveraging on the merits of 3D structure, high-mobility black phosphorus nanoribbon field-effect transistors (BPNR-FET) are demonstrated and the anisotropic transport properties are systematically investigated. A simple top-down reactive ion etching method is used to realize both armchair- and zigzag-oriented nanoribbons with various widths down to 60 nm. The mobility of BPNR-FET is found to be width- and thickness-dependent, with the highest hole mobility of approximate to 862 cm(2) V-1 s(-1) demonstrated in armchair-oriented device at room temperature by combining high- gate dielectric and hydrogen treatment to reduce sidewall scattering. Furthermore, hydrogenation effectively passivates the nanoribbon dangling bonds, leading to hysteresis and contact resistance improvement. This work unravels the superior electrical performance underscore a conceptually new device based on BP nanoribbons, paving the way toward the development of nonplanar devices on 2D materials platform.
引用
收藏
页数:9
相关论文
共 48 条
[41]   Few-Layer Black Phosphorus Carbide Field-Effect Transistor via Carbon Doping [J].
Tan, Wee Chong ;
Cai, Yongqing ;
Ng, Rui Jie ;
Huang, Li ;
Feng, Xuewei ;
Zhang, Gang ;
Zhang, Yong-Wei ;
Nijhuis, Christian A. ;
Liu, Xinke ;
Ang, Kah-Wee .
ADVANCED MATERIALS, 2017, 29 (24)
[42]   Scaling laws for the band gap and optical response of phosphorene nanoribbons [J].
Vy Tran ;
Yang, Li .
PHYSICAL REVIEW B, 2014, 89 (24)
[43]  
Wang XM, 2015, NAT NANOTECHNOL, V10, P517, DOI [10.1038/NNANO.2015.71, 10.1038/nnano.2015.71]
[44]   Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors [J].
Wang, Xinran ;
Ouyang, Yijian ;
Li, Xiaolin ;
Wang, Hailiang ;
Guo, Jing ;
Dai, Hongjie .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[45]   Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy [J].
Wu, Juanxia ;
Mao, Nannan ;
Xie, Liming ;
Xu, Hua ;
Zhang, Jin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (08) :2366-2369
[46]   Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics [J].
Xia, Fengnian ;
Wang, Han ;
Jia, Yichen .
NATURE COMMUNICATIONS, 2014, 5
[47]   First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons [J].
Xiao, Jin ;
Long, Mengqiu ;
Zhang, Xiaojiao ;
Zhang, Dan ;
Xu, Hui ;
Chan, Kwok Sum .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (20) :4141-4147
[48]   "White Graphenes": Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping [J].
Zeng, Haibo ;
Zhi, Chunyi ;
Zhang, Zhuhua ;
Wei, Xianlong ;
Wang, Xuebin ;
Guo, Wanlin ;
Bando, Yoshio ;
Golberg, Dmitri .
NANO LETTERS, 2010, 10 (12) :5049-5055