Two-Dimensional Semiconductors Grown by Chemical Vapor Transport

被引:105
作者
Hu, Dake [1 ]
Xu, Guanchen [1 ]
Xing, Lei [1 ]
Yan, Xingxu [1 ,2 ]
Wang, Jingyi [1 ]
Zheng, Jingying [1 ]
Lu, Zhixing [1 ]
Wang, Peng [2 ]
Pan, Xiaoqing [2 ,3 ,4 ]
Jiao, Liying [1 ]
机构
[1] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Dept Chem, Beijing 100084, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
中国国家自然科学基金;
关键词
chemical vapor transport; crystal engineering; electron microscopy; molybdenum; semiconductors; MOS2 ATOMIC LAYERS; SINGLE-LAYER; TRANSITION; MONOLAYERS; MOBILITY; FILMS;
D O I
10.1002/anie.201700439
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing controlled approaches for synthesizing high-quality two-dimensional (2D) semiconductors is essential for their practical applications in novel electronics. The application of chemical vapor transport (CVT), an old single-crystal growth technique, has been extended from growing 3D crystals to synthesizing 2D atomic layers by tuning the growth kinetics. Both single crystalline individual flakes and continuous films of 1 L MoS2 were successfully obtained with CVT approach at low growth temperatures of 300-6008C. The obtained 1 L MoS2 exhibits high crystallinity and comparable mobility to mechanically exfoliated samples, as confirmed by both atomic resolution microscopic imaging and electrical transport measurements. Besides MoS2, this method was also used in the growth of 2D WS2, MoSe2, MoxW1-xS2 alloys, and ReS2, thus opening up a new way for the controlled synthesis of various 2D semiconductors.
引用
收藏
页码:3611 / 3615
页数:5
相关论文
共 27 条
[1]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[2]   XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions [J].
Baker, MA ;
Gilmore, R ;
Lenardi, C ;
Gissler, W .
APPLIED SURFACE SCIENCE, 1999, 150 (1-4) :255-262
[3]   Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, Sn2S3, and SnS2 [J].
Burton, Lee A. ;
Colombara, Diego ;
Abellon, Ruben D. ;
Grozema, Ferdinand C. ;
Peter, Laurence M. ;
Savenije, Tom J. ;
Dennler, Gilles ;
Walsh, Aron .
CHEMISTRY OF MATERIALS, 2013, 25 (24) :4908-4916
[4]   High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method [J].
Dave, M ;
Vaidya, R ;
Patel, SG ;
Jani, AR .
BULLETIN OF MATERIALS SCIENCE, 2004, 27 (02) :213-216
[5]   MOBILITY OF CHARGE CARRIERS IN SEMICONDUCTING LAYER STRUCTURES [J].
FIVAZ, R ;
MOOSER, E .
PHYSICAL REVIEW, 1967, 163 (03) :743-&
[6]  
Georgiou T, 2013, NAT NANOTECHNOL, V8, P100, DOI [10.1038/NNANO.2012.224, 10.1038/nnano.2012.224]
[7]   Charge Density Waves in Exfoliated Films of van der Waals Materials: Evolution of Raman Spectrum in TiSe2 [J].
Goli, Pradyumna ;
Khan, Javed ;
Wickramaratne, Darshana ;
Lake, Roger K. ;
Balandin, Alexander A. .
NANO LETTERS, 2012, 12 (11) :5941-5945
[8]   Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations [J].
Han, Gang Hee ;
Kybert, Nicholas J. ;
Naylor, Carl H. ;
Lee, Bum Su ;
Ping, Jinglei ;
Park, Joo Hee ;
Kang, Jisoo ;
Lee, Si Young ;
Lee, Young Hee ;
Agarwal, Ritesh ;
Johnson, A. T. Charlie .
NATURE COMMUNICATIONS, 2015, 6
[9]   High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity [J].
Kang, Kibum ;
Xie, Saien ;
Huang, Lujie ;
Han, Yimo ;
Huang, Pinshane Y. ;
Mak, Kin Fai ;
Kim, Cheol-Joo ;
Muller, David ;
Park, Jiwoong .
NATURE, 2015, 520 (7549) :656-660
[10]   Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition [J].
Lee, Yi-Hsien ;
Zhang, Xin-Quan ;
Zhang, Wenjing ;
Chang, Mu-Tung ;
Lin, Cheng-Te ;
Chang, Kai-Di ;
Yu, Ya-Chu ;
Wang, Jacob Tse-Wei ;
Chang, Chia-Seng ;
Li, Lain-Jong ;
Lin, Tsung-Wu .
ADVANCED MATERIALS, 2012, 24 (17) :2320-2325