Zeros of the deformed exponential function

被引:5
作者
Wang, Liuquan [1 ]
Zhang, Cheng [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
Deformed exponential function; Asymptotic expansion; Eisenstein series; Bernoulli numbers;
D O I
10.1016/j.aim.2018.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (x) = Sigma(infinity)(n=0) 1/n!q(n(n-1)/2)x(n)(0 < q < 1) be the deformed exponential function. It is known that the zeros of f (x) are real and form a negative decreasing sequence (x(k)) (k >= 1). We investigate the complete asymptotic expansion for x(k) and prove that for any n >= 1, as k -> infinity, x(k) = -kq(1-k) (1+Sigma(n)(i=1) C-i(q)k(-1-i) + o(k(-1-n))), where C-i(q) are some q series which can be determined recursively. We show that each C-i (q) is an element of Q[A(0), A(1), A(2)], where A(i) = Sigma(infinity)(m=1) m(i)sigma(m)q(m) and sigma(m) denotes the sum of positive divisors of m. When writing C-i as a polynomial in A(0), A(1) and A(2), we find explicit formulas for the coefficients of the linear terms by using Bernoulli numbers. Moreover, we also prove that C-i(q) is an element of Q[E-2, E-4, E-6], where E-2, E-4 and E-6 are the classical Eisenstein series of weight 2, 4 and 6, respectively. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 348
页数:38
相关论文
共 25 条
[1]  
Berndt B.C., 2006, Number Theory in the Spirit of Ramanujan
[2]  
Boas Jr R.P., 1944, DUKE MATH J, V11, P17
[3]  
Derfel G., ARXIV161206226
[4]   On the 'pits effect' of Littlewood and Offord [J].
Eremenko, Alexandre ;
Ostrovskii, Iossif .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :929-939
[5]  
Feldstein A., 1972, ORDINARY DIFFERENTIA
[6]  
Fox L., 1971, Journal of the Institute of Mathematics and Its Applications, V8, P271
[7]  
Grabner P. J., 2005, AEQUATIONES MATH, V70, P268
[8]  
Iserles A., 1993, EUR J APPL MATH, V4, P1, DOI [DOI 10.1017/S0956792500000966), DOI 10.1017/S0956792500000966, 10.1017/S0956792500000966]
[9]   A certain functional-differential equation [J].
Langley, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (02) :564-567
[10]  
Levy P., 1930, B SOC MATH FRANCE, V58, P127