Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot

被引:122
作者
Chen, Yufeng [1 ,2 ]
Doshi, Neel [1 ,2 ]
Goldberg, Benjamin [1 ,2 ]
Wang, Hongqiang [1 ,2 ]
Wood, Robert J. [1 ,2 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
关键词
STRIDER; LOCOMOTION;
D O I
10.1038/s41467-018-04855-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several animal species demonstrate remarkable locomotive capabilities on land, on water, and under water. A hybrid terrestrial-aquatic robot with similar capabilities requires multimodal locomotive strategies that reconcile the constraints imposed by the different environments. Here we report the development of a 1.6 g quadrupedal microrobot that can walk on land, swim on water, and transition between the two. This robot utilizes a combination of surface tension and buoyancy to support its weight and generates differential drag using passive flaps to swim forward and turn. Electrowetting is used to break the water surface and transition into water by reducing the contact angle, and subsequently inducing spontaneous wetting. Finally, several design modifications help the robot overcome surface tension and climb a modest incline to transition back onto land. Our results show that microrobots can demonstrate unique locomotive capabilities by leveraging their small size, mesoscale fabrication methods, and surface effects.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
[Anonymous], 2004, CAPILLARITY WETTING, DOI DOI 10.1007/978-0-387-21656-0_9
[2]  
[Anonymous], 1986, BIOL AMPHIBIANS
[3]   High speed locomotion for a quadrupedal microrobot [J].
Baisch, Andrew T. ;
Ozcan, Onur ;
Goldberg, Benjamin ;
Ithier, Daniel ;
Wood, Robert J. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (08) :1063-1082
[4]  
Boxerbaum AS, 2005, IEEE ASME INT C ADV, P1459
[5]   The integument of water-walking arthropods: Form and function [J].
Bush, John W. M. ;
Hu, David L. ;
Prakash, Manu .
ADVANCES IN INSECT PHYSIOLOGY: INSECT MECHANICS AND CONTROL, 2007, 34 :117-192
[6]   A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot [J].
Chen, Yufeng ;
Wang, Hongqiang ;
Helbling, E. Farrell ;
Jafferis, Noah T. ;
Zufferey, Raphael ;
Ong, Aaron ;
Ma, Kevin ;
Gravish, Nicholas ;
Chirarattananon, Pakpong ;
Kovac, Mirko ;
Wood, Robert J. .
SCIENCE ROBOTICS, 2017, 2 (11)
[7]   Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing [J].
Chen, Yufeng ;
Gravish, Nick ;
Desbiens, Alexis Lussier ;
Malka, Ronit ;
Wood, Robert J. .
JOURNAL OF FLUID MECHANICS, 2016, 791 :1-33
[8]  
Doshi N, 2015, IEEE INT C INT ROBOT, P4119, DOI 10.1109/IROS.2015.7353959
[9]   AQUA: An amphibious autonomous robot [J].
Dudek, Gregory ;
Giguere, Philippe ;
Prahacs, Chris ;
Saunderson, Shane ;
Sattar, Junaed ;
Torres-Mendez, Luz-Abril ;
Jenkin, Michael ;
German, Andrew ;
Hogue, Andrew ;
Ripsman, Arlene ;
Zacher, James ;
Milios, Evangelos ;
Liu, Hui ;
Zhang, Pifu ;
Buehler, Martin ;
Georgiades, Christina .
COMPUTER, 2007, 40 (01) :46-+
[10]   A hydrodynamic model of locomotion in the basilisk lizard [J].
Glasheen, JW ;
McMahon, TA .
NATURE, 1996, 380 (6572) :340-342