On super (a, d)-edge-antimagic total labeling of disconnected graphs

被引:18
作者
Dafik [3 ,4 ]
Miller, Mirka [2 ,4 ]
Ryan, Joe [4 ]
Baca, Martin [1 ]
机构
[1] Tech Univ, Dept Appl Math, Kosice, Slovakia
[2] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[3] Educ Univ Jember, Dept Math, Jember, Indonesia
[4] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
关键词
(a; d)-edge-antimagic total labeling; Super; mC(n); mP(n); EDGE-ANTIMAGIC LABELINGS; PARACHUTES;
D O I
10.1016/j.disc.2008.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order p and size q is called (a, d)-edge-antimagic total if there exists a bijection f : V(G) U E(G) -> {1, 2,..., p + q} such that the edge-weights, w(uv) = f(u) +f(v) + f (uv), uv is an element of E(G), form an arithmetic sequence with the first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic total properties of disconnected graphs mC(n) and mP(n). (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4909 / 4915
页数:7
相关论文
共 18 条
[1]  
ACHARYA BD, 1991, DISCRETE MATH, V93, P275
[2]  
[Anonymous], 2000, P 11 AUSTR WORKSH CO
[3]  
[Anonymous], SUT J MATH
[4]  
Baca M, 2007, UTILITAS MATHEMATICA, V73, P117
[5]  
Baca M, 2001, UTILITAS MATHEMATICA, V60, P229
[6]  
Baca M, 2006, UTILITAS MATHEMATICA, V70, P119
[7]  
Bodendiek R, 1997, ARS COMBINATORIA, V46, P33
[8]  
Bodendiek R, 1996, ARS COMBINATORIA, V42, P129
[9]  
Enomoto H., 1998, SUT J MATH, V34, P105
[10]  
Figueroa-Centeno RM, 2002, ARS COMBINATORIA, V64, P81