The almost-periodic solutions of the weakly coupled pendulum equations

被引:0
作者
Li, Hepeng [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Sichuan Univ Arts & Sci, Dept Math, Dazhou, Peoples R China
关键词
Coupled pendulum equations; Normally hyperbolic invariant tori; Almost-periodic solutions; KAM theory; HYPERBOLIC INVARIANT TORI; PHASE-LOCKING; HAMILTONIAN NETWORKS; IN-PHASE; SYNCHRONIZATION; OSCILLATORS; BREATHERS; STABILITY; MODEL; CHAOS;
D O I
10.1186/s13662-018-1604-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is proved that, for the networks of weakly coupled pendulum equations d(2)X(n)/dt(2) + lambda(2)(n) SinX(n) = is an element of W-n(Xn-1,X-n,Xn-1), n is an element of Z, there are many (positive Lebesgue measure) normally hyperbolic invariant tori which are infinite dimensional in both tangent and normal directions.
引用
收藏
页数:22
相关论文
共 61 条
[1]  
[Anonymous], 1993, LECT NOTES MATH
[2]  
[Anonymous], DOKL AKAD NAUK USSR
[3]  
[Anonymous], 1989, Chaotic dynamics of nonlinear systems
[4]  
[Anonymous], 1994, Bol. Soc. Brasil. Mat. (N.S.)
[5]  
[Anonymous], INVARIANT TORI INFIN
[6]  
ARNOLD V., 1963, Uspekhi Mat. Nauk, V18, P13, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/RM1963v018n05ABEH004130]
[7]   THE DYNAMICS OF N-WEAKLY COUPLED IDENTICAL OSCILLATORS [J].
ASHWIN, P ;
SWIFT, JW .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :69-108
[8]   Total and partial amplitude death in networks of diffusively coupled oscillators [J].
Atay, FM .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) :1-18
[9]   Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators [J].
Bambusi, D .
NONLINEARITY, 1996, 9 (02) :433-457
[10]   PHASE LOCKING OF RELATIVISTIC MAGNETRONS [J].
BENFORD, J ;
SZE, H ;
WOO, W ;
SMITH, RR ;
HARTENECK, B .
PHYSICAL REVIEW LETTERS, 1989, 62 (08) :969-971