Blow-up, Quenching, Aggregation and Collapse in a Chemotaxis Model with Reproduction Term

被引:1
作者
Li, Jun-feng [1 ]
Chen, Hua [2 ]
Liu, Wei-an [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2014年 / 30卷 / 03期
基金
中国国家自然科学基金;
关键词
chemotaxis; ratio-dependence reproduction term; blow up; quench; super-sub-solution; EXISTENCE; EQUATIONS; BEHAVIOR; SYSTEMS;
D O I
10.1007/s10255-014-0406-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following chemotaxis model with ratio-dependent logistic reaction term { partial derivative u/partial derivative t = D del(del u - u del w/w) + u(a - bu/w), (x, t) epsilon Q(T), partial derivative w/partial derivative t = beta u - delta w, (x, t) epsilon Q(T), u del In(u/w)center dot(n) over right arrow = 0, x epsilon partial derivative Omega, 0 < t < T, u(x, 0) = u(0)(x) > 0, x epsilon (Omega) over bar, w(x, 0) = w(0)(x) > 0, x epsilon (Omega) over bar, It is shown that the solution to the problem exists globally if b + beta >= 0 and will blow up or quench if beta < 0 by means of function transformation and comparison method. Various asymptotic behavior related to different coefficients and initial data is also discussed.
引用
收藏
页码:617 / 626
页数:10
相关论文
共 19 条